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AFOSR-91-0144: Final Project Summary

Title: "SPONTANEOUS DISCOVERY AND USE OF CATEGORICAL STRUCTURE"

This project aimed to investigate how human learners discover and learn about categories in the
absence of explicit feedback from an external tutor (unsupervised learning). Most previous research on
human category learning has investigated such learning as it occurs in supervised tasks, in which the
experimenter is available to provide predefined categories and categorization-related feedback. Until
recently, there were few empirical studies of unsupervised category learning, or even reliable methods for
investigating such learning.

Our first goal was to develop reliable tasks and dependent measures for studying unsupervised
learning in the laboratory. Given such tasks, we aimed to develop a general model or picture of the pro-
cess by which unsupervised category learning occurs. An important step in this process is finding out
whether the learning process is fundamentally accumulative and continuous, or whether there are impor-
tant nonlinearities or discontinuities to be identified. One such discontinuity would be the discrete crea-
tion of new categories to describe novel or unusual stimuli that contradict the norms of existing
categories. An important aim of our research has been to discover whether unsupervised learning
proceeds through such all-or-none category invention, or whether learning occurs incrementally, as a
result of gradually accumulating evidence about patterns of co-occurring properties across different train-
ing instances.

In addition to investigating the learning of general categories from a series of training instance,
we also investigated how learning such categories affected the way in which individual training instances
are encoded and remembered. These two issues are closely related, because if category learning affects
how information is acquired about individual instances, then this in turn may influence the discovery and
learning of further categories.

During the past three years of AFOSR funding, we have conducted experiments and pilot studies
aimed at developing reliable empirical methods for investigating these issues, and applying these methods
to distinguish among different theories of the learning process. To date, three articles have been written
based on this research. The first was published in the March 1994 issue of the Journal of Experimental
Psychology: Learning, Memory, and Cognition. The other two are included as part of the present report.
One of these has been submitted for publication in the same journal, and the other will soon be submitted
for publication pending final revisions. In addition, a major address was given overviewing this research
in August 1994 at the "Third Practical Aspects of Memory" Conference held at the University of Mary-
land. A copy of that address is also enclosed.

We now provide a brief description of the three main articles.

1. Category Invention in Unsupervised Learning: describes three experiments using a free attribute-
listing task as an index of unsupervised learning. This procedure allowed the learning of categories to be
observed over trials, and levels of learning to be compared across different training conditions. The three
experiments described in this article provided strong evidence that subjects invented categories in
response to stimuli that violated the norms of previous categories. Learning was observed to vary not
merely with the number of instances shown from a given category, but according to whether categories
were presented such that each new category could be learned in contrast to the norms of a previous
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category. We refer to this dependence of learning on contrast rather than practice as a contrast effect, and
it is such contrast effects that provide our primary evidence for category invention.

2. Instance and Category Learning in Unsupervised Tasks: describes five experiments in which a
second task, based on memory for the features of individual training instances, was developed and tested
as a procedure for investigating unsupervised learning. These experiments replicated the contrast effects
obtained in the previous attribute listing experiments, and thus provided further evidence for the role of
category invention in unsupervised learning. They also investigated learning of categories in which
characteristic default features were present only probabilistically in individual training instances, as well
as categories in which the default features were present in all instances. Evidence for learning by
contrast-based category invention was obtained for both types of categories.

The task used in these experiments recorded how long subjects studied each feature of the train-
ing instances during the encoding phase of each trial, as well as their accuracy of verifying these features
for subsequent recognition-memory tests. Thus, it allowed us to observe the effect of learning general
categories on how subjects encoded and remembered individual instances. Evidence was obtained for an
uncertainty-reducing encoding process based on selectively encoding those features of each instance not
predictable from category norms ("schema-plus-corrections” encoding). These findings were consistent
with prior studies of memory for text passages and other materials based on familiar categories (e.g.,
Bower, Black & Turner, 1979; Graesser, Woll, Kowalski & Smith, 1980). They also showed that
category knowledge can improve learning of both expected and unexpected features of individual

instances.

3. Category Invention and Transfer of Learning in Unsupervised Tasks: describes three experiments,
two of which used the instance memorization task and one the attribute listing task to extend our earlier
investigations of unsupervised learning into more complex stimulus domains. This research provided
further evidence for the generality of category invention in discovering categories in non-feedback learn-
ing environments. Evidence was also obtained that the context of learning and the type of stimulus
materials employed (pictorial vs. verbal stimuli) can affect the stability or confusibility of a set of
categories after they have been learned. These experiments also provided evidence that new categories
are learned in terms of their differences from similar existing categories, with shared features transferred
to the new category rather being re-learned as if they were novel properties. This process by which new
categories are created by adding minimal modifications or elaborations to existing knowledge is con-
sistent with the schema-based encoding process used to learn individual instances. By conforming to this
economizing principle, category invention provides an efficient means by which categories and sub-
categories can be acquired in complex stimulus domains.

To summarize our progress, in carrying out this project we have developed two new task para-
digms for investigating unsupervised learning. We have obtained strong evidence for the use of category
invention to distinguish different patterns of correlated features in these tasks. Such category invention is
particularly interesting because it represents an important discontinuity or nonlinearity in the learning
process, and because it suggests that learned contrast may often play a stronger role in discovering pat-
terns than sheer exposure or practice. Importantly, the present tasks provide a way to study the acquisi-
tion of categories from individual training instances and at the same time investigate the effects of such
category knowledge on how later instances are interpreted, processed, and remembered. The present
results also suggest that new subcategories, as well as specific instances, are learned in terms of existing
categories by encoding minimal modifications or specific details that set the new instance or category
apart from the reference category in terms of which it is learned.
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Unsupervised learning and pattern discovery are ubiquitous in everyday life, and are central com-
ponents of many important performances in practical tasks. The major principles and underlying
mechanisms of unsupervised learning have been poorly understood, and the topic has received little
empirical study within experimental psychology. We argue that the present procedures and empirical
results represent an important step in understanding these issues. We have studied the role of major fac-
tors such as practice, contrast, and the relation between categories in determining the course of category
acquisition. Some of these factors, such as the importance of learned contrast in non-feedback environ-
ments, may have practical applications in the design of information systems and user interfaces. In addi-
tion, the task paradigms we have developed may be used in future studies of these and related issues in
human learning.
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Category Invention in Unsupervised Learning

John P. Clapper and Gordon H. Bower

This research aimed to discriminate between 2 general approaches to unsupervised category
learning, one based on learning explicit correlational rules or associations within a stimulus domain
(autocorrelation) and the other based on inventing separate categories to capture the correlational
structure of the domain (category invention). An “attribute-listing” paradigm was used to index
unsupervised learning in 3 experiments. Each experiment manipulated the order in which instances
from 2 different categories were presented and evaluated the effects of this manipulation in terms
of the 2 competing theoretical approaches to unsupervised learning. Strong evidence was found for
the use by Ss of a discrete category invention process to learn the categories in these experiments.
These results also suggest that attribute listing may be a valuable method for future investigations

of unsupervised category learning.

The study of concepts and category learning has long been a
focus of research in cognitive psychology. Most of this research
has studied supervised category learning, in which a tutor
provides the subjects with category labels and feedback rel-
. evant to the success criterion of the learning task (e.g., Bruner,
Goodnow, & Austin, 1956; see Millward, 1971, for a review).
By contrast, unsupervised learning has received much less
attention by experimental psychologists. In unsupervised learn-
ing, subjects must invent and use categories without pre-
defined category labels or feedback from an external tutor.
Many categories that people learn in real life are acquired in
observational, untutored conditions and thus are examples of
unsupervised learning. Much of our knowledge about the
properties and behavior of common physical objects, social
interactions, linguistic classes and rules, and everyday tasks
and procedures may be learned in this manner (Billman &
Heit, 1988). Any learning by pioneers about a novel environ-
ment is unsupervised because they must invent their own
categories for describing that environment and generate their
own criteria for classifying stimuli into these categories.

This article describes a recently developed procedure for
investigating unsupervised learning (see Clapper & Bower,
1991) and three experiments in which this procedure was used
to test theories of how categories could be learned and
represented in unsupervised tasks. We begin by describing
more precisely what we mean by an unsupervised learning task
and how categories could be defined within such a task. We
then argue that models of unsupervised learning can be
divided into two general types, which differ in how category
knowledge is represented in long-term memory and the pro-
cesses by which this knowledge is abstracted from individual
training instances. After providing this background, we de-
scribe the attribute-listing paradigm and show how it can be
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used to discriminate between the two classes of theories
described earlier.

Defining Categories in Unsupervised Tasks

In supervised learning tasks, categories are predefined by
the experimenter and subjects must use the experimenter’s
feedback to determine the correct rules for assigning stimuli to
each category. Any arbitrary categorization rule may be used
in such experiments (e.g., disjunctive rules such.as “Members
of Category A are either red squares or blue diamonds, but not
red diamonds or blue squares”), and categories need not be
functionally natural or capture informative patterns within the
stimulus set. In contrast, in unsupervised tasks categories are
not arbitrarily predefined by an external tutor; rather, subjects
must discover categories for themselves as they explore a given
stimulus domain. This presumably requires that some regular-
ity or structure actually exist within that domain, that is, a
pattern or signal that can be distinguished from the noise of
background stimulus variation. It is necessary to define what
kind of pattern or structure constitutes a category before
proceeding to evaluate whether subjects in a given condition
have learned this category.

Following Clapper and Bower (1991), we adopt a conven-
tional feature-based vocabulary for describing commonalities
and differences within a stimulus set and then define catego-
ries in terms of this vocabulary. Individual stimuli are de-
scribed as collections of features. Each feature can be thought
of as a specific, concrete value of a more generic or abstract
atiribute. For example, the stimuli in a given set could be
described in terms of their shape (a generic attribute), with
particular stimuli being squares, circles, or triangles (the
specific values of the shape attribute). In principle, the values
of an attribute could be either discrete (e.g., squares vs. circles)
or continuous (i.e., ordered quantities, such as gradations of
size or shading), but only the discrete-valued case is consid-
ered here. '

Given a set of attributes for describing a stimulus domain,
patterns of correlated features (attribute values) provide an
inductive basis for partitioning that domain into subsets or
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Stimulus Set 1

Attribute Attribute
12345678 12345678
11111111 22222111
11111112 22222112
11111121 22222121
11111122 22222122
11111211 22222211
11111212 22222212
11111221 22222221
11111222 22222222
Category "A" : 11111 x xx
Category "B" : 2 2 2 2 x x
Stimulus Set 3
Attribute Attribute
12345678 123456178
11111111 323244314
11111112 43342433
11111121 2444234373
11111122 43224333
11111211 32434441
11111212 24333443
11111221 4 3233334
11111222 3342334414

Category "A" : 1111 1xzxx
"Not - A" : YYYYYYYY

Stimulus Set 2

Attribute Attribute

12345678 12345678
11122121 22211222
11112211 22222111
11111111 22221121
11112221 22211221
11112112 22221112
11121112 22222211
11122222 22211212
11111222 22222222

»®
»
x
*®
x

Category “"A" : 111
Category "B" : 2 2 2

X X X X X
Stimulus Set 4

Attribute Attribute
12345678 12345678
11111111 22212111
11121112 12222112
11111121 22222121
12111122 22222122
11111211 22222211
11111212 21222212
11112221 22222221
11111222 22222222

Category "A" : 1 1111 xxx

Category "B" : 22 222 x x

Figure 1. Sample stimulus sets illustrating how categories are defined in terms of correlated attribute values.

categories.! To illustrate, a collection of fruit flies bred in a
geneticist’s laboratory could be described in terms of attributes
such as size, eye color, wing shape, leg length, and so on. If-it
was then observed that individuals with long wings also had red
eyes, large size, and long legs, whereas those with short wings
had white eyes, small size, and short legs, these patterns of
feature co-occurrences would form an inductive basis for
recognizing two distinct categories of fruit flies within that
population (Clapper & Bower, 1991).

Figure 1 shows several stimulus sets with different types of
correlational patterns that could serve as a basis for partition-
ing them into separate categories. Within each of these sets,
some attributes have strongly correlated values whereas others
do not. For example, in Stimulus Set 1, the first five attributes
listed have perfectly correlated values whereas the last three
attributes vary independently. We refer to correlated values as

default values of the category to which they give rise. Attributes
that are uncorrelated within a given category are referred to as
variable attributes.

! Of course, the existence of such patterns depends on the particular
set of attributes used to describe a given stimutus set. Thus, the same
set of stimuli might be categorized differently with respect to different
sets of attributes. In principle, the categorization of a given stimulus
and the attributes used to describe it are somewhat mutable and
dependent on the task context and the other stimuli with which it is
contrasted. In practice, experimenters usually define a set of canonical
attributes by which a stimulus set is generated and described, and this
determines the normatively “correct™ categorization of that set to
which subjects’ actual performance is compared. This is reasonable,
and will predict performance accurately. so long as the attributes
actually used by subjects to describe the experimental stimuli approxi-
mately correspond to those assumed by the experimenter.
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Figure 1 also illustrates another point. namely, that the
interfeature correlations need not be perfect for categories to
be distinguished based on these correlations (see Stimulus Set
4). In principle, a category would have positive utility so long as
some of its features could be predicted with greater-than-
chance reliability. This is consistent with the arguments of
Wittgenstein (1953), Rosch (1975), and others that natural
categories are not defined in terms of necessary and sufficient
features, but rather are often characterized by probabilistic
features and fuzzy boundaries. Furthermore, defining category
structure in terms of predictive utility (i.e., feature correla-
tions) is consistent with the functional role of categories in
making predictions, drawing inferences, and completing pat-
terns based on partial information (e.g., Clapper & Bower,
1991; Holland, Holyoak, Nisbett, & Thagard, 1986; Schank,
1982).2

Theories of Unsupervised Learning

We distinguish two general approaches to capturing correla-
tional patterns, each of which has been implemented by
several models in the empirical literature. The first approach is
to represent feature correlation patterns directly, for example,
within a correlational matrix, rather than partitioning the
domain into separate categories. We will refer to this as the
autocorrelation approach because models of this type assume
that learners monitor the strengths of association (correlation)
between individual pairs of features. The only learning mecha-
nism required by this theory would be a process for modifying
correlational associations or rules. Such associations would be
strengthed by repetition and weakened by decay, interference
processes, or both. If some features within a stimulus set were
consistently correlated in their appearance, their strengths of
association would increase relative to those of uncorrelated
values. Given such a correlational record in memory, subjects
could fill in missing features of an incomplete pattern, distin-
guish correlated from uncorrelated features, and perform
other such inferences normally associated with category-level
knowledge. It is also important to note that this inferential
power could be gained without any explicit categorization of
the stimulus set.

There are two general types of autocorrelation theories. The
first assumes that correlational associations between all pre-
sented features are strengthened simultaneously on each trial
(e.g..J. A. Anderson, 1977; J. A. Anderson, Silverstein, Ritz, &
Jones, 1977, McClelland & Rumelhart, 1985; Rumelhart,
Hinton, & McClelland, 1986). We can refer to these models as
matrix autocorrelators because memory is viewed as a matrix of
interfeature correlations that are continually updated by new
experiences. A specific example of this class would be the
one-layered autoassociator model of J. A. Anderson (1977).
The second type of such autocorrelation theories are the
rule-sampling or hypothesis-testing theories, in which correla-
tional hypotheses are tested sequentially (usually one per trial)
against the observed features in each instance (e.g., Billman &
Heit, 1988; Davis, 1985). These rules are strengthened by
confirmation and may be weakened by disconfirmation on a
given trial. The main difference between these theories and the
matrix models is in- whether all the interfeature correlations

provided by an instance are strengthened simultaneously or
sequentially and how many interfeature correlations are up-
dated on each trial.

The second approach to capturing correlational patterns in
a stimulus domain is to explicitly partition that domain into
separate categories and store information about each category
in separate data structures (e.g., schemas or prototypes).
Within this approach, which we refer to as category invention,
feature correlations are represented indirectly by (a) partition-
ing stimuli into explicit subsets or categories in accordance
with correlational patterns and (b) accumulating summary
norms separately for each category. These summary norms
contain information about the expected features of individual
instances. If only stimuli that contain a particular pattern of
correlated features are assigned to a given category, then
norms computed across this selected subset of instances will
capture their correlational structure.

The major issue for the learner, according to this theory, is
determining when and on what basis to create new categories.
In many statistical clustering models of category learning, it is
assumed that the learner will first scan an entire set of stimuli
before computing the optimal classification scheme for that set
(e.g., Fried & Holyoak, 1984; Michalski & Stepp, 1983). This
assumption is generally unrealistic for human learners. Be-
cause of attentional limitations, people must examine stimuli
one at a time and update relevant category norms in response
to each. Rather than computing global classification schemes
across whole stimulus sets, humans are more likely to be
opportunistic categorizers, creating new categories as they are
needed to accommodate novel stimuli that do not fit into
existing categories (e.g., J. R. Anderson, 1991; Clapper &
Bower, 1991; Holland et al., 1986; Schank, 1982). We refer to
this as the incremental learning assumption.

Incremental learning implies that subjects attempt to catego-
rize each presented stimulus and that summary knowledge
about the category provides a framework within which in-
stances are described and compared with normative expecta-
tions. Assuming that there is a good enough fit between an
instance and a known category, the features of that instance

2 Note that this definition of categories in terms of correlational
patterns does not imply that all members of a given category must be
more similar to each other than to any nonmember. For example. in
Figure 1, Stimulus Set 2, the instance 11122222, which is a member of
Category A, is more similar to instance 22222222, which is a member of
Category B, than to fellow Category A instance 11111111. We define
categories in terms of predictive utility rather than in terms of
similarity, or family resemblance (e.g., Rosch & Mervis. 1975). As
shown by Figure 1, in some domains there may be no categorization
scheme in which all members are more similar to each other than to
any nonmembers. Nevertheless, there may be useful structure to be
captured in such domains (i.e., correlational patterns among some
attributes of the stimuli). This definition, however, does not exclude
the possibility that the most natural categories, those that are easiest to
learn and use, may have members that are highly similar to each other
and dissimilar to members of other categories. Thus, our definition of
categories does not contradict the arguments of Rosch and Menvis
(1975) and others that so-called basic level categories tend to exhibit
family resemblance structures.
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will be used to update the norms of its category, that is. the
expectedness or subjective probability of the presented at-
tribute values will be incremented in the category norms. But
in some cases, an instance may fit poorly into even the closest
available category. For example, it may be describable in terms
of the attributes associated with that category, but it may also
violate several of its default expectations (see, e.g., Schank,
1982). In these cases, a new category could be created to
accommodate that stimulus. When later instances are pre-
sented similar to that which triggered the new category, they
will also be assigned to this category.

The norms for a given category might be represented in
several ways, including prototypes, schemas, scripts, frames,
various networks, and production rules (e.g., J. R. Anderson,
1991; Holland et al., 1986; Kahneman & Miller, 1986; Minsky,
1975; Rumelhart & Ortony, 1977; Schank, 1982; Schank &
Abelson, 1977). All of these approaches are capable of
representing statistical summaries of the properties of in-
stances within a category, that is, of resembling a subjective
probability distribution for the occurrence of different values
of each attribute. For the present purposes, the differences
between these various methods of representing category norms
are. relatively unimportant, and they are de-emphasized
throughout this article. The major claims of the category
invention approach pertain not to details of how category
norms are represented in memory but rather to the explicit
separation of norms from different categories on the basis of
their perceived contrast and to the selective assimilation of
instances to these categories. It is this discrete partitioning of
experience that generates the major predictions that are tested
here.

Category Learning in Discrimination Tasks

The first step in testing these theories is developing an
appropriate task or paradigm in which unsupervised learning
can be reliably observed and investigated. In the absence of
such tasks, little prior empirical study of unsupervised category
learning has occurred. Previous supervised classification experi-
ments provide little guidance toward developing unsupervised
learning tasks. Traditionally, supervised learning has been
measured by classification accuracy, where subjects classify
presented instances into aiternative categories provided by the
experimenter (e.g., Bruner et al., 1956). Bécause subjects in
unsupervised learning are not given predefined categories,
classification accuracy obviously cannot be used to measure
learning in these tasks. ’ :

If categories are defined in terms of correlational patterns
within a domain of stimuli, then acquisition of such categories
would be implied whenever the subjects’ performance reveals
their sensitivity to these patterns. One indication of such
sensitivity would be if subjects in certain tasks responded
differently to correlated attribute values than to uncorrelated
values. One task we have investigated that has these properties
is presented to subjects as an instance-discrimination (identifi-
cation) task in which subjects are asked to learn to distinguish
among a set of presented stimuli so that they can respond
uniquely to each one. In learning to identify each individual
instance of a set. subjects must first learn how that instance

differs from the other stimuli presented during training. In
other words, subjects must learn which features or combina-
tions of features specify that instance’s unique identity and
must exclude all possible lures within the presented stimulus
set.

If the subject’s task is to memorize a collection of stimulus
patterns, then their labor can be greatly reduced by noticing
and taking advantage of redundancies among some of the
features. These advantages can be illustrated with the task of
memorizing the 16 stimulus patterns shown as rows in Stimulus
Set 1 of Figure 1. Here Attributes 1 through 5 are redundant.
with values of 1 in one cluster (Category A) and values of 2 in
the other cluster (Category B). Although there are eight
attributes, and potentially 286 = 256 patterns in the sample
space, the 16 patterns actually presented can be uniquely
identified by their values on four different attributes—the last
three and some (any) one of the first five. Rather than
memorizing the configuration of eight bits per stimulus, the
optimal learner could memorize the 16 stimuli by recording
only four bits of information for each pattern—namely, the
category (or any of the default values, each of which predicts
the other four) and the values of the last three (unpredictable
or nonredundant) attributes. It is also important to note that
once the value of one of the default attributes is specified, the
other four defaults are unnecessary for identifying a unique
stimulus. This contrast suggests that subjects who have learned
the subjective categories (or clusters of interfeature correla-
tions) will treat default attributes differently from variable
attributes as they try to memorize each instance.

The Attribute-Listing Task

The foregoing discussion suggests that if an observable index
of feature weighting could be developed for instance-
discrimination tasks, then such tasks might be used to investi-
gate unsupervised learning. In the experiments described in
Clapper and Bower (1991), subjects were presented with a
series of instances and were asked to list those features that
they considered miost informative for distinguishing each
instance from all those that they had seen previously in the
series. Subjects were told to imagine that they would have to
use their feature list at some later time to pick out the current
instance from among a field of similar distractors in a multiple-
choice recognition test. They were instructed to list only those
features they would need to pick out the current stimulus in
such a discrimination test and to omit features that they would
not need even if these were physically very salient or promi-
nent. As in Figure 1, the stimuli in these tasks were composed
of several attributes, each with two or more alternative values.
Categories in the stimulus sets were defined in terms of
correlated attribute values.

Within the autocorrelational approach. the probability of
listing a given attribute value should depend on how strongly it
is correlated with other values of the current instance. Thus,
learning in a given condition is defined as subjects’ sensitivity
to differences in the degree of correlation among different
pairs of attribute values, that is, sensitivity to the fact that some
values of an instance are mutually redundant and others are
not. This sensitivity is measured in terms of differences in
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listing probability for correlated versus uncorrelated values
(l.e.. in terms of subjects’ observed preference for listing
variables rather than defaults).

The interpretation of the listing task in terms of category
invention is similar to its interpretation in terms of autocorre-
lation. Here, the probability of listing a given value should be a
function of its expectedness or probability of occurrence within
the current reference category. Learning is defined as sensitiv-
ity to differences in expectedness between variables and
defaults, again measured by differences in their probability of
listing (i.e., by subjects’ preference for listing variables over
defaults).

By subtracting the proportion of defaults listed on a given
trial from the proportion of variables listed, we may compute a
quantitative index of learning for that trial. This index provides
a way to compare the level of learning on different trials of an
experiment; for example, if the preference measure is statisti-
cally greater on Trial n + 1 than on Trial n, then it can be
inferred that some learning has occurred over that interval of
trials. In experiments reported by Clapper and Bower (1991),
such a bias in favor of listing uncorrelated variables evolved
gradually over trials as successive instances were encountered
and subjects learned their consistent properties.

Distinguishing the Theories

In the present article, we use this preference measure to
compare learning under different experimental conditions,
that is, to evaluate the effects of specific independent variables
on unsupervised learning. To test the autocorrelation versus
category invention theories described earlier, we looked for
some variable that the theories would expect to have different
effects on learning. We noted that the theories we considered
differed in their predictions of how the particular sequencing
of training instances from two categories would affect the rate
at which categories are learned. Consequently, the experi-
ments described in this article rely on such sequence manipula-
tions to test the autocorrelation versus category invention
theories.

We assume that learners update their category knowledge
(by modifying existing categories or creating new ones) follow-
ing the presentation of each new training instance. Given this
incremental learning assumption, category invention should be
highly sensitive to the order in which instances from different
categories are presented during training. In particular, learn-
ing should be greater when categories are acquired one at a
time (e.g., when Category A is well-learned prior to encounter-
ing any instances of Category B) than when instances of
different categories are presented together from the start of
training. In the latter (mixed) sequence, learners may simply
tump both types of instances together into a single category,
thus, failing to capture the correlational patterns in the
stimulus set.

To understand these predicted sequence effects, imagine an
experiment in which instances of Category A are presented for
the first  trials, followed by an instance of Category B on Trial
n + 1. Given this arrangement, we would then ask how the
probability of creating a new Category B on Trial n + 1 would
vary as a function of n. To answer this question, consider that

any reasonable function for inducing category norms from a
series of training instances should show some sensitivity to
basic statistical parameters (e.g.. sample size and variability)
that greatly affect the reliability of its norms (generalizations).
For example, people should be more confident in assigning
grey as the default color of elephants after they have seen
many clephants, all of which were grey, than if they have seen
only one elephant, which happened to be grey. Applying this
observation to the experimental situation described above, as
successive instances of Category A are presented (i.e., as the
value of n is increased), one can see that the consistent default
attributes of that category should increase in their expected-
ness. As the learner’s confidence in the Category A norms
increases, so should the perceived contrast between these
norms and the first instance of Category B, which violates
several default values of Category A. Thus, the probability of
creating a new category in response to the first instance of
Category B should increase with the number (n) of prior
instances of Category A.

This analysis implies that presenting the first instance of
Category B following only a few instances of Category A
should lead to a higher probability that the two types of
instances will be assimilated to a single, overarching category.
This would occur because the features of the Category B
instance would be compared with a relatively weak set of
norms for Category A; hence, the perceived contrast between
these norms and the instance of Category B would be reduced.
If both types of instances were assimilated to a single category,
the learner would then simply average over the feature
correlations within the A and B categories, so that the
correlational information conditional upon the two categories
would be lost. Because neither instances in Category A nor
instances in Category B would contrast strongly with this
aggregated category on subsequent trials (assuming both were
presented in random order), subjects might have difficulty
unlearning these overgeneralized norms and discovering the
correct category-level discriminations.

Autocorrelation models do not possess the same inherent
tendency toward sequence sensitivity shown by category inven-
tion models when incremental learning is assumed. For ex-
ample, it is easy to imagine a basic autocorrelation model that
simply adds to incremental frequency counts within a correla-
tional matrix each time a new instance is encountered. In
principle, such a model would be completely immune to
sequence effects on final learning (i.e., the final count in the
matrix would be the same regardless of the order in which
instances were presented). Thus, the model suggests that
learning that the presence of large wings predicts black eyes in
some insects would not affect learning that in other insects the
presence of small wings predicts white eyes.

Although sequence sensitivity is not implied by the autocor-
relational approach, it is important to ask whether it is possible
to develop plausible models within this approach that mimic
the particular type of sequence sensitivity expected by category
invention. Existing autocorrelation models do not display
sequencing effects similar to those of category invention. For
example, autocorrelation models developed within the connec-
tionist framework generally predict sequence effects that are
almost the opposite of those expected by category invention
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models (e.g.. J. A. Anderson, 1977 Rumelhart et al., 1986).
These models predict that correlational learning should be
improved if instances of both categories are presented mixed
together (e.g.. in random alternation) from the beginning of
training. Presenting a block of instances from Category B
following an earlier block of instances from Category A causes
massive forgetting of correlational associations learned during
the Category A block, a phenomenon referred to as cata-
strophic interference (McCloskey & Cohen, 1989; Ratcliff,
1990). By contrast, category invention theory predicts better
learning in a blocked condition than when instances are
presented in a mixed sequence and expects no catastrophic
interference between categories.’

Models of unsupervised learning based on serial hypothesis
testing (e.g., Billman & Heit, 1988; Davis, 1985) also fail to
reproduce the sequence effects expected by category inven-
tion. In such models, there is little reason to expect interfer-
ence between different correlational patterns within either
blocked or mixed sequences. For example, the rule “large
wings implies black eyes” neither confirms nor disconfirms the
rule “small wings implies white eyes,” and there is no obvious
reason why learning one should increase the difficulty of
learning the other. Indeed, the focused-sampling assumptions
of Billman and Heit (1988) seem more compatible with
positive transfer across categories (at least if the categories
differ by contrasting defaults on the same set of attributes).

To reproduce the sequence effects predicted by category
invention, autocorrelation models would have to include a
process that strongly reduces correlational learning when
instances of two patterns are mixed together, but not when
they are presented in separate blocks. For example, an
autocorrelation model could assume that correlational learn-
ing is subject to associative interference, or fan effects, similar
to those studied in experiments on paired-associate learning
(e.g., Postman, 1971) and sentence memory (e.g., J. R. Ander-
son, 1976; 1983). Thus, learning an association between a
particular pair of attribute values (e.g., large wings with black
eyes) might interfere with learning associations between other
values of the same attributes (e.g., small wings with white
eyes). This autocorrelation-with-interference theory could ac-
commodate some of the results predicted by the alternative,
category invention theory. For example, the interference
theory predicts that correlations within Category A would be
learned more slowly if instances of Category A were interwo-
ven in the training sequence with instances of Category B than
if the instances of Category A were presented alone or prior to
any instances of Category B.

The problem with such interference theories is that interfer-
ence should occur between different correlational patterns
regardless of whether training instances are presented in a
blocked or mixed sequence, whereas category invention pre-
dicts interference only in mixed sequences. Thus, an interfer-
ence theory expects prior learning of instances of Category A
to impair correlational learning in a later block of instances of
Category B (similar to the negative transfer between lists
observed in many paired-associate learning experiments (e.g.,
Postman, 1971). The more instances of Category A that are
presented prior to Category B. the greater the negative
transfer and the slower should be the learning of Category B

correlations. This contradicts the prediction of category inven-
tion that presenting more instances of Category A prior to
Category B should increase the probability of creating a
separate Category B and thus improve learning of both
Category A and B defaults.

Such correlational interference would also imply that learn-
ing Category B in a blocked sequence would cause retroactive
interference and reduce prior learning of Category A (e.g.,

- Postman, 1971), although this effect need not be as strong as

the catastrophic interference predicted by connectionist au-
toassociators. (At least, catastrophic retroactive interference is
not generally observed in standard experiments on associative
interference.) As noted previously, the category invention
theory expects no interference across categories once separate
categories have been formed.

In summary, such variations of the autocorrelation approach
appear unable to mimic the particular pattern of sequence
sensitivity expected by category invention theories. Thus,
demonstrating superior learning and a lack of interference
between categories in blocked training sequences would pro-
vide evidence for a nonincremental, contrast-based process of
category invention.

Experiment 1

The aim of this experiment was to evaluate the attribute-
listing task as an index of unsupervised learning and to test the
predictions of the two theories concerning sequence effects.
Subjects’ listing of attributes was compared in three condi-
tions. In the blocked condition, the stimuli were partitioned
into two categories based on patterns of correlated attribute
values. The training instances were blocked by categories (i.e.,
a series of instances from one category was presented followed
by a series of instances from the other category). Following
these two training blocks was a test, or transfer, block in which
several instances of both categories were presented in random
order. In the mixed condition, the same instances were
presented as in the blocked condition, but instances of both
categories were randomly interspersed in the training se-
quence rather than being grouped into separate blocks. In the
control condition, all the attributes of the stimuli varied
independently, so that none of the attributes were correlated
and the stimulus set was not partitioned into distinct catego-
ries. The same final test block that was presented in the

3 Most connectionist models that could be applied to unsupervised
learning are apparently subject to catastrophic interference, even
when these models are not strict autocorrelators (but see Carpenter &
Grossberg, 1987). The reason is that such modeis encode knowledge
about contrasting categories as patterns of activation over the same set
of network units even when these models do contain an explicit
category level of representation (e.g.. output units corresponding to
different response categories). Because most connectionist models do
not separate knowledge about different categories in memory the way
that prototype or schema models do. different patterns are liable to
interfere with each other. especially when they are learned separately.
for example. in blocked training sequences (McCloskey & Cohen.
1989).




UNSUPERVISED LEARNING 449

blocked condition was also given in the mixed and control
conditions.

The first two conditions provided a test of the two models of
unsupervised learning described earlier. Category invention
implies that early aggregation may occur when contrasting
categories are presented in a mixed sequence, and so poorér
learning was predicted in the mixed condition than in the
‘blocked condition. An autocorrelation model could accommo-
~ date interference between categories in the mixed condition by

assuming that associative interference results from learning
correlations among different values of the same set of at-
tributes. However, this leads to the prediction that interfer-
ence should be observed between the categories in the blocked
condition as well as in the mixed condition, as noted earlier.
Specifically, the autocorrelation-plus-interference hypothesis
predicts (a) that the second category in the blocked condition
should be learned more slowly than the first because of
proactive interference or negative transfer from the first
category, and (b) that once this second category is learned, it
should produce retroactive interference on subjects’ memory
for the first category, that is, that evidence of forgetting or
unlearning should be obtained when instances of the first
category are presented in the final test block. By contrast, the
category invention theory expects little interference of any
kind in the blocked condition.

The third condition was included in this experiment as a
control to evaluate learning in the other two conditions. This
condition was identical to the others except that the stimuli
lacked correlated attributes. Thus, any differences in perfor-
mance between this condition and the correlated-attribute
conditions would be due to these correlations rather than to
other, extraneous, factors.

Method

Subjects. The subjects were 30 Stanford University undergraduates
participating in partial fulfiliment of an introductory psychology course
requirement. : }

Procedure. Subjects were tested in groups of 8 to 10 for a single
session of 40 to 50 min. The training instances were realistic line
drawings of fictitious insects (see Figure 2) presented in a 42-page
booklet that measured 8 in. by 11.5 in. (20.3 cm by 29.2 cm). The first
two pages of this booklet contained full instructions and an agreement
that subjects signed to indicate their informed consent to participate.
A single training instance (insect picture) appeared on each subse-
quent page, together with brief instructions for the experimental task.

Subjects were instructed to write on each page the “distinctive”
properties of each individual insect, where distinctive properties were
those that would be useful for distinguishing the current instance from
others of the same general type. Subjects were told to imagine that
they were writing their lists in order to prepare for a later multiple-
choice recognition test in which they would have to match up each list
with the correct insect from among a large number of distractor items
(i.e., other bugs from the same test booklet). Subjects were instructed
to list only those properties that would be usefui for identifying an
insect on such a test and to omit nondistinguishing properties even if
they were highly prominent or noticeable. They were further told to
look only at the page of the booklet that they were currently working
on and not to look backward or forward at other pages.

Subjects were allowed to complete the experimental task at their
own pace. Once they had finished, they were given a debriefing page
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Figure 2. Sample stimuli from Experiment 1. Instances of one
category are on the right and instances of the other are on the left. The
correlated attributes in this stimulus set are wings, abdomen shape,
abdomen shading, mandibles, and antennae; the variable attributes
are legs, tails, and eyes.

that explained the procedures and goals of the experiment and were
allowed to leave.

Materials. The stimuli were line drawings of fictitious insects, all of
which shared a common base structure (e.g., head, thorax, abdomen)
plus eight dimensions of variation (attributes), such as wing shape.
abdominal markings, eye color, and so forth (see Figure 2). Each
attribute had either two or four discrete values (e.g., different wing
shapes, differently colored eyes) depending on the experimental
condition to which it was assigned.

The stimuli shown to a given subject were constructed according to
one of two different plans depending on a subject’s assigned condition
(see Table 1). In two of the three experimental groups, the stimulus set
was partitioned into two distinct categories defined by contrasting sets
of correlated attribute values. In these correlated groups, five of the
eight attributes were binary (two-valued), and their values were
perfectly correlated across the instances such that each instance
contained one of two possible sets of correlated values (denoted as
Values 1 or 2 in Table 1). An instance’s category membership was
defined by which of these two clusters of correlated values it contained.
These values are referred to as the default values of each category.
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Table 1
Stimulus Set Design and Counterbalancing in Expenment 1
' Stimulus set
Correlated Set 1 Control Set 1 Correlated Set 2 Control Set 2
Attribute Category A Category B Category A Category B Category A Category B Category A Category B

1. Wings 1 2 1 2 1 2 1 2
2. Body 1 2 1 2 1 2 1 2
3. Markings 1 2 1,2 1,2 1,2 3,4 1,2 3,4
4. Tails 1 2 1,2 1,2 1,2 3,4 1,2 3,4
5. Eyes 1 2 1,2 1,2 1,2 3,4 1,2 3.4
6. Legs 1,2 3,4 1,2 - 3,4 1 2 1.2 1,2
7. Jaws 1,2 3,4 1,2 3,4 1 2 1,2 1.2
8. Antennae 1,2 3 1,2 3,4 1 2 1,2 1,2

Note. The table entries indicate possible values of each attribute within a given stimulus set. The two correlated stimulus sets were each shown to
two different groups of subjects, one in a blocked sequence and one in a mixed sequence.

The remaining three attributes in the correlated conditions had four
values and were variable within each category. Two of the four values
occurred with equal probability in instances of Category A, whereas
the other two occurred with equal probability in instances of Category
B. These attributes were uncorrelated within each category (i.c., they
varied independently across instances of that category). Within these
constraints, 2° = 8 instances were generated from each category, for a
total of 16 overall.

The stimuli in the control condition were equivalent to those in the
two correlated conditions in the number of values assigned to each
attribute (two or four), but these insects lacked correlated attributes
present in the other conditions. Two attributes were correlated in all
conditions; these were the wing shape and body shape attributes,
which we judged to be the most salient attributes of the insects. These
defaults, which were constant across all three groups, are referred to as
base defaults. The four-valued variables were coordinated with the
base defaults in the same way in the uncorrelated group as in the
correlated groups (see Table 1). The stimuli in the uncorrelated
groups can be divided into two pseudocategories on the basis of the
base defaults and the pattern of dependent variation of the four-
valued variables. However, three binary attributes that had correlated
defaults in the other conditions occurred as uncorrelated variables in
this condition.

The control condition was designed to show that any greater listing
of variables over defaults in the correlated conditions could not simply
be explained as an artifact due to variables possessing more possible
values than defaults (four versus two). If this artifactual explanation is
correct, then the same degree of bias in reporting variables over
defaults should be observed in the control group as in the correlated
conditions. But if the preference for listing variables over defaults is
greater in the correlated groups than among the controls, this
difference must be due to subjects’ explicit or implicit correlational
learning.

Design. The experimental design contained three between-
subjects conditions, two of which had correlated values and one of
which did not, as explained previously. The two correlated conditions
used the same stimuli and differed only in the order in which training
instances from the two categories were presented.

In the blocked condition. instances of Category A were presented in
random order for the first 16 trials, followed by 16 trials in which
instances of Category B were presented (each instance of the two
categories was presented twice). Following this training phase was a
final test block of eight trials in which four instances from each
category were presented together in a mixed sequence. The order of
~ instances in this test block was randomized (the same randomizations

were used for subjects in all three groups), with the restriction that no
more than two instances from the same category could occur in a row.

In the mixed condition, the same instances were presented as in the
blocked condition, but in a different order. During the training phase,
16 instances from Category A and the 16 instances from Category B
were presented in an intermixed sequence rather than blocked as in
the previous condition. Instances from the two categories were
presented in random order, with the restriction that no more than
three instances from the same category could occur consecutively. A
final mixed test block of eight instances from the two categories was
then presented, the same as that used in the blocked condition, (i.e.,
the same specific insect pictures were presented in the same order in
both conditions).

In the control condition, instances were presented in random order
for the first 32 trials, except that no more than three instances with the
same base default values were allowed to occur in a row during this
phase. The final eight test trials were identical to those of the category
conditions (i.., five attributes were correlated during this block).

Counterbalancing the design. To construct stimuli from the specifi-
cations shown in Table 1, we first assigned particular stimulus
attributes to abstract roles in the design. This assignment was held
constant across all groups. With the exception of base defaults, each
attribute had four values in half of the groups and two values in the
other half of the groups. Two different stimulus sets were constructed
for each of the three between-subjects conditions (blocked, mixed, and
control); that is, six booklets were constructed and presented to
different subjects. Attributes that were four-valued variables in one
group were two-valued defaults in the other group from the same
condition. This ensured that any effects due to materials (e.g.,
differences in the baseline salience or prominence of different at-
tributes) would be balanced over the experiment as a whole.

Results and Discussion

Subjects’ attribute lists were coded in terms of whether or
not each of the eight relevant attribute dimensions was
mentioned on a given trial.* The main index of learning was the

4 Because this was a free-listing task. subjects generated their own
response categories. For example, subjects shown a bug with large
mandibles might describe the instance as possessing “big pincers,”
“large mouthparts.” “oversized mandibles,” or a variety of other
labels. Although the specific labels might vary among different
subjects. it was generally clear which attribute was being referred to at
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Figure 3. Preference scores for the three conditions of Experiment 1. Data from the mixed and control
conditions are separated by category (or pseudocategories defined by the base defaults in the control
condition), whereas trials from the test block are presented in their original order for all three groups.

proportion of variables listed minus the proportion of defaults
listed on a given trial. This difference is referred to as the

~ preference score for each trial because it reflects subjects’

preference for listing variables over defaults. Preference scores
for all three conditions are shown in Figure 3.

We also recorded the proportion of base defaults listed on
each trial, but because they were correlated in all groups and
hence potentially contaminated by materials effects, subjects’
listing of these attributes did not provide the same unambigu-
ous measure of learning as did the preference scores. Hence,
we focus on preference scores as the principle dependent
measure in most of the following discussion.

Examination of Figure 3 reveals, first, that preference scores
were higher overall in the two correlated conditions (blocked
and mixed) than in the control condition. Averaged over all
trials, four-valued attributes were listed 19.6% more often
than two-valued attributes in the control condition, a signifi-
cant preference, #(9) = 3.93, SE = 0.05,p < .01. However, this
preference was much stronger in the other two groups.
Variable attributes were listed 74% more often than defaults
in the blocked condition, #(9) = 9.65, SE = 0.077, p < .001.
This preference was significantly greater than the correspond-
ing difference in the control condition, #(18) = 5.95, SE =
0.092, p < .001. In the mixed condition, variables were listed
about 55% more often than defaults, #(9) = 10.38, SE = 0.053,
p < .001; this effect was also significantly larger than the 19.6%
preference in the control condition, #(18) = 4.84, SE = 0.073,
p < .001.

The contrasting results for the correlated versus control
conditions indicate that the preference for listing variables
over defaults in the correlated conditions was in large part due

any given time. In the few cases in which there was some initial
uncertainty about which attribute a subject meant to refer to, this was
resolved by observing how the use of the label shifted over the next few
trials in correspondence with changes in the particular attributes
under consideration.

to the correlations themselves, not simply to the fact that
uncorrelated attributes had a larger number of possible values
than correlated attributes. Thus, subjects in the correlated
groups must have internalized the correlational structure of
the stimulus set in some manner, either by tracking pairwise
correlations or by partitioning the set into separate categories.

The category invention theory predicts that preference
scores would show rapid learning of both categories in the
blocked condition but that learning in the mixed condition
would be slower. The data are generally consistent with this
prediction. If one examines the data plotted in Figure 3, it is
apparent that the preference for studying variables over
defaults increased rapidly for both categories in the blocked
condition. Preference scores increased from —.03 on the first
Category A trial to .90 on the eighth and remained fairly stable
thereafter; the linear trend over the first eight trials was highly
significant, #(9) = 9.01, SE = 0.59, p < .001. Subjects sharply
increased their listing of defaults when the first instance of
Category B was presented. The resulting decrease in prefer-
ence scores, compared with the immediately preceding Cat-
egory A trial, was highly significant, #(9) = 6.31, SE = 0.122,
p < .001. Thereafter, preference scores increased rapidly from
.17 on this first Category B trial to a maximum of .83 by the
sixth. The linear contrast over the first half of this block was
statistically significant, #(9) = 4.58, SE = 0.63, p < .0L
However, no significant change occurred over the remaining
nine instances in this block.

Recall that the autocorrelation-with-interference hypoth-
esis predicts that prior learning of Category A should reduce
subsequent learning of Category B because of negative trans-
fer or proactive interference effects. But no such interference
occurred in the present experiment. Learning of Category B
appeared to occur at least as rapidly as that of Category A, and
there was no significant difference between asymptotic learn-
ing of the two categories (i.e., when preference scores aver-
aged over the last eight instances of each were compared).
t(9) = 1.54, SE = 0.065, p > .10. This absence of proactive
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interference appears to be a strike against the autocorrelation
theory but is consistent with category invention models.

Preference scores during the mixed test block did not differ
significantly from those of the earlier blocks. This was true
when the test block was compared to the last eight instances of
Category A, 1(9) = 1.64. SE = 0.067, p > .10, as well as to the
last eight instances of Category B, #(9) = 0.35, SE = 0.022,p >
.50. In addition, preference scores during the test block did not
differ between the two categories, #(9) = 0.16, SE = 0.504,p >
.50. These results indicate that the learning observed during
the earlier training blocks, in which instances of the same
category were presented for many trials in succession, general-
ized to a different context in which the two categories were
mixed. In other words, learning was stable over changes in the
learning environment (Carpenter & Grossberg, 1987). There
was no evidence for retroactive interference from learning
Category B upon test performance on Category A, as would
have been expected in an autocorrelation-with-interference
framework.

Learning occurred somewhat more slowly in the mixed than
the blocked condition. Preference scores increased over the
entire training block for each category. This increase was
significant for both Category A, £(9) = 4.18, SE = 3.55,p < .01
and .Category B, #(9) = 3.74, SE = 3.31, p < .01. However,
preference scores were greater in the blocked than the mixed
condition over the first eight instances shown of Category A,
t(18) = 3.69, SE = 0.079, p < .01 and of Category B #(18) =
2.34, SE = 0.12,p < .05. The same comparison was marginally
significant over the second eight instances of Category A,
t(18) = 1.96, SE = 0.10, p < .10. Pooled over all 32 training
trials, preference scores were significantly higher in the blocked
than the mixed condition, #(18) = 2.46, SE = 0.089, p < .05.
However, the blocked and mixed conditions did not differ
significantly during the test block, #(18) = 0.71, SE = 0.14,p >
.25. This suggests that although learning occurred more rapidly
in the blocked condition, subjects in the mixed condition were
able to catch up by the end of training.

The faster learning that was due to category blocking is
consistent with the category invention theory because it
expects subjects to have difficulty separating categories pre-
sented in a mixed sequence. As noted earlier, however, an
autocorrelation model could explain negative transfer in the
mixed condition as being due to interference or unlearning of
correlations among different feature pairs. However, such an
interference process predicts a different pattern of results in
the blocked condition than were shown by thiese data. First, it
implies that prior learning of Category A should interfere with
subsequent learning of Category B. However, these data show
no such negative transfer; the second category was learned at
least as fast as the first in this group. Second, an autocorrelation-
with-interference model also predicts that Category B should
exert strong retroactive interference on Category A in the
blocked condition. As noted earlier, no evidence of such
interference was obtained in the final test trials of this
éxperiment. This lack of retroactive interference is particularly
embarrassing for connectionist autocorrelators, which predict
catastrophic interference from learning the Category B corre-
lations on subjects’ memory for the earlier Category A correla-
tions (McCloskey & Cohen, 1989: Ratcliff. 1990).

Although the preference scores showed no evidence of
retroactive interference during the test block. there was some
evidence that presenting instances of the two categories in a
mixed sequence increased the salience of their category
membership. Recall that base defaults were the most physi-
cally prominent attributes of the insect stimuli, and it was
considered likely that subjects would tend to list these particu-
lar attributes when they wished to indicate an instance's
category membership. Although caution must be exercised
when interpreting listing patterns for base defaults, because
these attributes were correlated in all groups and hence their
data may be contaminated with unbalanced materials effects, it
appears that base defaults were often used by subjects to
indicate the categorization of each instance. Consistent with
this explanation, higher listings were observed for base de-
faults in the mixed test block of the blocked condition, in which
the categorization of instances varied from trial to trial, than in
the last eight trials of the preceding same-category training
blocks, in which categories were constant and could be
inferred from local context, #(9) = 2.48, SE = 0.081,p < .05.
No such increase occurred for either variables, 1(9) = 1.00,
SE = 0.004, p > .25, or for regular defaults, 1(9) = 1.54, SE =
0.035, p > .10. In other respects, the base defaults behaved
like the regular defaults in the blocked condition, decreasing
strongly during the first six instances of each category: #(9) =
2.83,8E = 0.478,p < .05 for Category A, and ¢(9) = 6.85, SE =
0.255,p < .001 for Category B. .

By contrast, base defaults remained fairly constant through-
out the experiment in the ‘mixed condition, showing no
significant decreasing trends and remaining significantly higher
than the regular defaults, #(9) = 2.55, SE = 0.067, p < .05.
Subjects who learned the categories in the mixed condition
would have needed to explicitly indicate the category member-
ship of each instance throughout the experiment because this
could not be inferred from context. To do so, they should have
continued listing at least one of the base defaults as shown by
the present data.

' Experiment 2

The aim of this experiment was to extend the results of
Experiment 1 by testing further predictions of the category
invention theory. Subjects were randomly assigned to two
conditions. In the contrast condition, a pretraining block of 8
instances of Category A was followed by a test block of 12
instances of Category A and 12 instances of Category B that
were presented in mixed sequence. In this condition, subjects
should learn strong Category A defaults prior to encountering
their first instance of Category B. They should readily notice
the contrast between the two categories when they encounter
this instance of Category B and rapidly learn the defauit values
of the newly invented Category B without unlearning or
weakening the prior Category A norms.

In the second, practice, condition. a mixed pretraining block
of four instances of Category A and four instances of Category
B was followed by the same test block as in the contrast
condition. Category invention implies that subjects may aggre-
gate the two types of instances into a single category. thereby
pooling and obscuring the correlational structure of the
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stimulus set. The result would be reduced learning of both
categories in this condition. By contrast. the autocorrelation
theory expects better learning of Category B in the practice
condition because correlational associations among Category
B defaults would receive more practice (repetitions across
different instances) in that condition. (A total of four instances
of Category B were presented during the pretraining block in
the practice condition, whereas no ‘instances of Category B
occurred prior to the test block in the contrast condition.)

The theories also make different predictions about transfer
of learning from one category to the other. First, increasing the
number of instances of Category A, from-four in the practice
condition to eight in the contrast condition, is expected by
category invention theorists to improve later learning of
Category B. This would seem to be an example of positive
transfer from Category A to Category B. Second, increasing
the number of instances of Category B, from zero in the
contrast condition to four in the practice condition, is expected
by category invention theorists to impair learning of Category
A, which is an example of interference or negative transfer
from Category B to Category A. This seeming paradox—
positive transfer from A to B combined with negative transfer
from B to A—makes sense in terms of category invention
because this theory assumes that the particular sequence in
which instances are presented affects the probability of creat-
ing separate categories by either highlighting or camouflaging
the differences between them. By contrast, the predicted
interaction of transfer and repetition effects with the sequenc-
ing and number of instances from each category makes little
sense within the autocorrelational framework. If the predicted
pattern of results obtains, it would provide strong evidence for
the existence of a category invention process in unsupervised
learning.

Method

Subjects. The subjects were 40 undergraduate students of San Jose
State University participating in partial fulfillment of an introductory
psychology course requirement.’

Procedure. Subjects were tested in groups for a single session of
30-45 min. The training instances were line drawings of fictitious
insects presented in booklets similar to those used in Experiment 1.
The attribute-listing procedure was identical to that of Experiment 1,
except that the present experiment consisted of 32 instead of 40 trials.

Materials. The same type of pictorial insect stimuli as in Experi-
ment 1 were used. These stimuli all shared a common base structure
(e.g., head, thorax, abdomen) plus eight dimensions of variation
(attributes), such as wing shape, abdominal markings, eye color, and so
forth. Five of the eight attributes had two values, and these values were
correlated across instances such that the set was partitioned into two
distinct categories defined by contrasting sets of default attribute
values (see Table 2).

The remaining three attributes had four values, two of which
occurred with equal probability in Category A and the other two of
which occurred with equal probability in instances of Category B.
These variable attributes were uncorrelated within each category (i.e.,
they varied independently across instances of that category). A total of
eight instances (2%) could be generated within each of the two
categories within these constraints. All 16 possible instances were
presented to subjects in this experiment.

Design.  Two between-subjects conditions were tested in this experi-
ment. In the contrast condition, only instances of Category A were

tn
(5%

Table 2

Stimulus Set Design and Counterbalancing in Experiments
2and 3

Stimulus set
Group 1 Group 2
) Cate

Attribute Agory CateBgory Catt;.\gory CaleBgory
1. Wings 1 2
2. Body 1 2 { 3
3. Markings 1 2 "
4. Tails B 2 i% 33
5. Eyes 1 2 112 3.4
6. Legs 1,2 3,4 1 2
7. Jaws 1,2 3,4 1 2
8. Antennae 1,2 3,4 1 2

Note. The table entries indicate possible values of each attribute

within a stimulus set.

presented for the first eight trials, followed by a mixed block of 12
instances of Category A and 12 instances of Category B. The first block
of eight trials was referred to as the pretraining block, whereas the
second block of 24 trials was referred to as the test block. The first
instance of the test block was always a member of Category B.
Instances of both categories were thereafter presented in a randomly
ordered, intermixed sequence, with the constraint that no more than
three instances from the same category be allowed to appear in
succession.

In the practice condition, the eight instances from the pretraining
block consisted of four from Category A and four from Category B,
rather than eight from Category A as before. The four instances from
each category were selected so that both values of each variable
attribute occurred twice, and none of the variable attributes ‘was
correlated with any of the others. These instances were presented in a
random order, with the restrictions that the first instance be a member
of Category A and that no more than two instances from the same
category occur in sequence. The same 24-instance test block was used
as in the contrast condition. Note that the only difference between the
two conditions is that in the practice condition, four instances of
Category B were substituted for the four instances of Category A that
were presented in the contrast condition.

Counterbalancing the design.  The counterbalancing scheme for this
experiment is illustrated in Table 2. All of the attributes had four
values in one condition and two (correlated) values in the other, except
for the first two attributes. The first two attributes were base defaults,
which consisted of the wing shape and body shape attributes, as in
Experiment 1. These were two-valued and correlated in both condi-
tions. The balancing scheme shown in Table 2 ensured that materials
effects (e.g., differences in baseline prominence of different attributes)
would be balanced over the six attributes that were not base defaults.
Half of the subjects in the contrast and practice conditions were tested
with Stimulus Set 1 and half with Stimulus Set 2.

Results and Discussion

The same attribute-listing data as in Experiment 1 was
collected in this experiment. The preference scores (listing of

S Thanks to Forest Jourden and to the San Jose State University
Psychology Department for facilitating access to their subject pool for
this experiment.




154 JOHN P. CLAPPER AND GORDON H. BOWER /
Experiment 2
Qr
@ L
(=]
§ [ M
-l
§ o
° -
o ‘ X = Practice
s
Pretraining Al A3 A5 A7 A9 BI B3 BS B7 B9
Instance

Figure 4. Preference scores for the two conditions of Experiment 2. Pretraining trials are shown in their
original order, whereas the test block trials are separated by category.

variables minus that of defaults on each trial) displayed in
Figure 4 were the main index of learning.

As shown in Figure 4, learning was higher in the contrast
than in the practice condition throughout the experiment.
Preference scores increased significantly during the pretrain-
ing block in both contrast, #(16) = 5.23, SE = 0.774,p < .001,
and practice conditions, #(17) = 4.86, SE = 0.627, p < .001;
however, preference was higher overall in the blocked condi-
tion, #(33) = 4.83, SE = 0.707, p < .001. This result is not
surprising because subjects in the mixed condition were shown
instances of two categories during pretraining while those in
the blocked condition only had one category to learn during
this interval.

Turning to the test block (the numbered trials in Figure 4),
one can see that learning of both categories was higher in the
contrast condition than in the practice condition. Preference
scores for Category A showed a significant decrease on the first
Category A instance of the test block, relative to the last
instance of the pretraining biock, #(16) = 2.85, SE = 0.075,p <
.02. Thus, encountering the first instance of Category B at the
beginning of the test block appeared to have a significant effect
on Category A norms in this group. After this initial decrease,
preference scores for Category A showed a modest but
statistically significant increase over the remaining trials of the
test block, #(16) = 2.36, SE = 0.959, p < .05. By contrast,
preference scores for Category A in the practice condition
showed neither the initial decrease, #(17) = 0.96, SE = 0.096,
p > .50, nor the subsequent increasing trend, ¢(17) = —0.78,
SE = 0.762, p > .20, observed in the contrast condition.
Overall, preference scores for Category A during the test block
were higher in the contrast condition than in the practice
condition, £(33) = 3.40, SE = 0.114,p < .01.

Note that both the category invention and autocorrelational
approaches can accommodate the finding that overall learning
of Category A was greater in the contrast than in the practice
condition. Such a result is expected in category invention
theory because subjects in the contrast condition had the
opportunity to learn Category A in isolation. with no danger of

condition. Autocorrelation theory would expect better learn-
ing of Category A in the contrast condition because a larger
number of instances in that category were presented in that
condition. . L ;
Although both theories predict faster learning of Category f
A in the contrast condition, the autocorrelation approach has
difficulty accommodating the detailed pattern of results from -
this condition. Thus, autocorrelation seems to imply that ;
learning of Category A should have continued to increase
following the pretraining block in the practice condition. .
Although Category A learning in the practice condition wouid |
have been expected to lag a few trials behind that in the |
contrast condition, in principle, asymptotic learning should
have been about the same in both groups. However, Category
A preference scores did not increase further during the test
block of the practice condition; Category A learning appears to
have stopped by the end of pretraining and never to have ;
approached the asymptotic level attained in the contrast :
condition. )
Category invention theory predicts that subjects should
discriminate between contrasting categories better when one
of the categories is learned first (contrast condition) than when
instances of both are presented together from the start of
training (practice condition). It is important to note that this
result was predicted not only for the pretrained category (A)
but also for the nonpretrained category (B). The better initial
learning of Category A in the contrast condition was expected

|
initially lumping it with Category B, as occurred in the practice !
[

6 Five subjects were excluded from the data analysis, 2 from the
practice condition and 3 from the contrast condition, because they
produced no usable data from more than one third of the 32 trials in
the experiment. A subject was considered to have produced no usabie
data from a given trial if he or she listed no features on that trial (i.e..
left that page in the booklet blank). if the only information provided
was a comparison to a previous instance (e.g.. “'same as the first one™).
or if none of the features listed were representable within our
eight-attribute coding scheme.
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to increase the perceived contrast between the Category A
norms and the features of the first instance of Category B,
thereby increasing the probability that a new category would
be created to describe the instance of Category B. Thus, better
learning of Category B was predicted to occur in the contrast
condition despite the larger number of instances presented 10
subjects in the practice condition (i.e., in spite of the fact that
the interfeature correlations of Category B would have been
repeated for a larger number of trials in the practice condi-
tion).

Consistent with this prediction, Category B was learned
significantly better in the contrast condition than in the
practice condition. Preference scores for this category in-
creased quite rapidly in the contrast condition; the linear trend
computed over the 12 trials of the test block was significant,
1(16) = 4.36,SE = 1.210,p < .001. The linear contrast over the
first 12 instances of Category B of the practice condition (4 of
which were in the pretraining block) also showed a significant
increase, #(17) = 2.63, SE = 1.269,p < .02. However, overall
learning of Category B was higher in the contrast condition
than in the practice condition. Averaged over the 12 test trials,
preference scores in the contrast condition were significantly
higher than those in the practice condition, £(33) = 2.09, SE =
0.109, p < .05. When asymptotic learning was compared by
averaging the last six Category B trials in each condition,
preference scores averaged 31.2% higher in the contrast
condition, #(33) = 2.89, SE = 0.108,p < .0L.

Although more instances of Category B were presented in
the practice condition than in the contrast condition, subjects
in the contrast condition showed greater learning of Category
B. Presenting four instances of Category B during the pretrain-
ing block of the practice condition strongly interfered with the
later learning of both categories in that condition. According
to the category invention theory, this interference was due to
inadequate learning of Category A defaults prior to encounter-
ing the first instance of Category B, which caused subjects to
aggregate both types of instances into a single category.

In summary, the results of the present experiment were
consistent with category invention and cannot be accommo-
dated easily within a strictly autocorrelational approach. The
only qualification of this support for category invention derives
from the temporary increase in the listing of Category A
defaults that occurred after the first instance of Category B was
presented in the contrast condition. There are several ways to
interpret this slight readjustment of Category A norms at the
start of the test block. In theory, the instance of Category B
should have triggered the invention of a new category and thus
have had no effect on Category A norms nor on preference
scores for subsequent instances of Category A. One possibility
is that the first instance of Category B triggered a new category
as_expected, but that the instance was assimilated both to this
new category and to Category A. The new category would then
provide a better match to subsequent instances of Category B
than would Category A, so for these later instances only the
new Category B would be evokéd. Meanwhile, the Category A
norms would gradually return to previous levels as subsequent
instances of Category A were assimilated and overwhelmed
the effects of the earlier Category B values.

A related possibility (L. W. Barsalou, personal communica-

tion. October 14. 1992) is that the temporary reduction in
Category A norms might have been due to subjects’ explicitly
contrasting the two categories during the early portion of the
test block. People sometimes characterize categories in terms
of their contrast with neighboring categories, as male is known
in contrast to female; perhaps something similar was going in
this experiment. Early in the mixed block, subjects may have
been learning a set of differences between Category B and the
previously learned Category A, for example, “has broad wings
instead of narrow wings.” In this case, the norms for both
categories might have been activated for the first few instances
of Category B, thus explaining the temporary change in
Category A norms.’

A third explanation for the temporary increase in listing of
Category A defaults following the first instance of Category B
notes that the listing of Category A base defaults also in-
creased during the test block, ¢(16) = 2.16, SE = 0.038,p <
.05. In Experiment 1, we interpreted a similar rise in listing of

" base defaults as being due to subjects’ using these values to

indicate the category membership of each instance during
mixed sequences. Perhaps the increase in listing of both
Category A defaults and base defauits in the present experi-
ment occurred for this same reason. However, if this explana-
tion was correct, then a similar increase in default listing (and
decrease in preference scores) should have been observed in
the test block of Experiment 1; no such increase occurred in
that experiment. In addition, subjects’ listing of base defaults
remained elevated throughout the test block of the present
experiment, whereas subjects’ default listing declined (and
preference scores increased) following the first few trials.
Thus, it is likely that the apparent decrease in Category A
preference scores at this point in training may have reflected
some activation of or contrast between the early Category B
instances and previous Category A norms. This is an interest-
ing possibility deserving of further study.

Experiment 3

This experiment was a modification of Experiment 2 de-
signed to further investigate category invention in unsuper-
vised learning. In particular, the present experiment investi-
gated the influence of initially aggregating two contrast
categories into a single class on subjects’ ability to subse-
quently acquire accurate category-level discriminations.

All conditions of this experiment resembled the contrast
condition of Experiment 2, except that the series of same-
category instances in the pretraining block was preceded by a
single mstance from the contrasting category. In the contrast
condition of Experiment 2, eight instances of Category A had
been presented in succession prior to a mixed block of both
Category A and Category B instances. Those eight instances
were sufficient for most subjects to learn strong Category A
defaults prior to encountering the first instance of Category B,

7 Such early contrasting of the two categories could not have been
detected in Experiment 1 because only instances of Category B were
presented during the second block of that experiment. This would have
made it impossible to observe any temporary changes in Category A
norms during that interval.
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thus causing a new category to be created upon seeing the first
instance of Category B: In the present experiment, rather than
presenting all instances of Category A during the pretraining
block. a single instance of Category A was presented on the
first trial, followed by a series of instances of Category B (by
convention, the category presented first in the training se-
quence is always referred to as Category A). The main
independent variable in this experiment was the number of
Category B instances that followed the first instance of
Category A in the pretraining block; one group of subjects had
4 instances of Category B in this series, a second group had 8§,
and a third group had 12. After this pretraining block, a mixed
block of both Category A and Category B instances, similar to
that of Experiment 2, was presented for the next 13 trials.

The objective of presenting instances from two different
categories on the first two trials was to cause subjects to
aggregate the categories at the start of training. Because
Category A was presented first, the aggregate norms should
have initially been dominated by the values of that Category A
instance. As subsequent instances of Category B were pre-
sented, however, the consistent features of that category
should have competed with, and then dominated, the contrast-
ing Category A values in the aggregate norms. If sufficient
instances of Category B occurred in this series, these Category
B values would be learned as defaults of the combined
category, so that presenting a second instance of Category A
would trigger a new category to accommodate it. The resuit of
more instances of Category B, then, would be rapid learning of
both Categories A and B during the subsequent mixed block.

By contrast, if insufficient Category B instances occurred
prior to the test block, the probability of creating a new
category should have been reduced. This reduction would
result from the relatively high residual strengths of the
Category A values in the aggregate norms, which would lessen
the perceived contrast between those norms and the features
of the first instance of Category A of the test block. If, as
predicted, such subjects perceived little disparity and failed to
segregate the second instance of Category A from the aggre-
gated norms, that failure would be revealed in their attribute
listings during the final mixed block, when they should show
reduced learning of both categories.

Autocorrelation models predict a different pattern of re-
sults. Consistent with category invention, in such models one
would expect that increasing the number of instances of
Category B in pretraining should increase later Category B
learning, simply because of increased practice. However, in
autocorrelation theory one would expect that this manipula-
tion would also decrease later Category A learning because of
negative transfer or interference at the level of correlational
associations or rules. Thus, the autocorrelation theory is
inconsistent with improved learning of Category A because of
the increased number of instances of Category B presented
during pretraining.

Method

Subjects.  The subjects were 36 undergraduate students of Stanford
University participating in partial fulfillment of an introductory psychol-
ogy course requirement. : »

Procedure. The procedures for this experiment were identical to
those of the previous two experiments. except that the numbers of
trials differed. Subjects were tested for a single half-hour session in
groups of 8 to 10. They were given test booklets similar to those used in
Experiments | and 2 and were allowed to complete the listing task at
their own pace. The listing instructions were identical to those used in
Experiments 1 and 2.

Materials and design. The stimuli in this experiment were the same
pictorial insect stimuli used in Experiments 1 and 2. The stimulus set
was partitioned into categories on the basis of perfectly correlated
values on five binary attributes, as in Experiment 2. The remaining
three attributes varied independently over two values, different for the
two categories. The design shown in Table 2 for Experiment 2 held
true for Experiment 3.

The main difference between Experiment 3 and Experiment 2 was
the order in which training instances from the two categories were
presented. The first instance was always different from the second:
following the conventions of previous experiments, we refer to the
instance presented first as belonging to Category A. The following n
instances were from Category B; the number of instances in this series
was the independent variable in this experiment. These first n + 1
instances (one Category A instance plus n Category B instances) were
referred to as the pretraining block. This pretraining block was
followed by a mixed test block of seven Category A and six Category B
instances presented in random order (with the constraint that no more
than two instances of the same category could occur in a row).

Each of the 16 possible instances from the training set was presented
at least once, and instances were selected for a second or third
presentation such that each value of the variable attributes appeared
equally often. As in Experiment 2, two different stimulus sets were
prepared such that assignment of default or variable status to a given
attribute was balanced across the group of subjects; this balancing is
depicted in Table 2. For both stimulus sets, booklets were constructed
such that one category of insects played the role of the first-presented
Category A for some subjects, whereas other subjects received
booklets in which the other set of insects played the role of Category A.
Crossing these two balancing factors (the stimulus set used and the
order in which categories were presented) with the three levels of the n
variable (number of Category B instances in the pretraining series)
yielded a total of 12 groups. Three subjects were randomly assigned to
each group, for a total of 36 subjects in this experiment.

Results and Discussion

Preference scores for the three conditions of this experiment
are shown in Figure 5. The main prediction of category
invention tested in the present experiment was that increasing
the number of instances of Category B in pretraining would
increase learning of both categories in the following mixed
block. This was expected because increasing the number of
Category B instances should increase the relative strength of
Category B values in the aggregated norms while decreasing
the residual strength of Category A values from the first trial.
This, in turn, should increase the probability of creating a new
category when the next instance of Category A is encountered
because these Category A values should appear relatively
surprising with respect to these aggregated norms. Once the
categories were disaggregated by this triggering, default learn-
ing could occur rapidly for each.

The pattern of results shown in Figure S lends support to
these expectations. Preference scores for Category A (num-
bered A2 through A8 in Figure 5) increased significantly
during the test block for conditions n = 12.#(11) = 3.68. SE =
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Figure 5. Preference scores for the three conditions of Experiment 3. Pretraining trials are shown in their
original order, whereas the test block trials are separated by category.

0.385,p < .01, and n = 8, ¢(11) = 2.48, SE = 0.358,p < .05,
and marginally significantly for condition » = 4, 1(11) = 1.93,
SE = 0.447, p < .10. This suggests that some learning may
have occurred in all three groups. Asymptotic learning of
Category A was estimated by averaging preference scores
across the last four instances of Category A of the test block.
As expected, these averages indicated that learning was
significantly higher in condition n = 12 than in conditionn = 8,
1(22) = 3.32, SE = 0.088,p < .01. However, the corresponding
difference between the n = 12 and n = 4 conditions failed to
attain conventional levels of statistical reliability, #(22) = 1.22,
SE = 0.102, p > .10. Learning appeared to be somewhat
higher in the n = 4 than in the n = 8 condition, but this
comparison also failed to reach statistical significance, #(22) =
1.56, SE = 0.106, p > .10. When the data from conditions n =
4 and n = 8 were pooled, the comparison between this
combined condition and the n = 12 condition was statistically
significant, #(34) = 2.36, SE = 0.088, p < .05. Overall, these
results indicate higher Category A learning in conditionn = 12
than in the other two conditions.

Comparisons of Category B learning showed an ordering of
conditions similar to those of Category A. Within the pretrain-
ing block, learning appeared greater in the n = 12 condition
than in the n = 8 and n = 4 conditions, but not greater in the
n = 8 than the n = 4 condition. Preference scores on the last
pretraining trial were marginally greater in the n = 12
condition than in the n = 8 condition, #(22) = 2.06, SE = 0.076,
p < .10, nonsignificantly greater in the n = 12 condition than
in the n = 4 condition, 1(22) = 1.47, SE = 0.094,p > .10, and
not significantly different between the n = 8 and n = 4
conditions, #(22) = 0.75, SE = 0.111, p > .20. The results
appeared slightly stronger when only default listings from the
final pretraining trial were compared. Default listing was
significantly less in then = 12thanthen = 8 condition, #(22) =
2.27, SE = 0.098, p < .05 and in the n = 4 condition, #(22) =
2.24, SE = 0062, p < .05, but there was no significant
difference between the n = 8 and n = 4 conditions, #(22) =
0.81.SE = 0.103,p > .25.

Turning to the test block, one can see that Category B
learning was again higher in the n = 12 condition and lower in
the other two conditions. Preference scores for the n = 12
condition exceeded those of the n = 8 condition by 27%, a
significant difference, #(22) = 214, SE = 0.126,p < .05. In
addition, preference scores were 22% higher in the n = 12
condition than in the n = 4 condition, a marginally significant
effect, #(22) = 1.73, SE = 0.126, p < .10. No significant
difference was obtained between the n = 4 and n = 8
conditions, #(22) = 0.41, SE = 0.123. Whenthen =4 andn = 8
conditions were pooled into a single condition, preference

_scores in this condition were significantly less than those in the

n = 12 condition, #(34) = 2.28, SE = 0.107,p < .05.

Although some learning may have occurred in all three
groups, the stronger learning observed in the n = 12 condition
favors the category invention theory over a pure autocorrela-
tion theory. The present results, therefore, reinforce and
expand on the results of Experiment 2 by demonstrating
further patterns of transfer that appear incompatible with
strict autocorrelation and that appear to require category
invention. However, category invention does not predict higher
learning in the n = 4 condition than in the n = 8 condition,
which appeared to have occurred here; rather, we had ex-
pected a monotonic increase in learning as n was increased
from 4 to 12. The most plausible interpretation of these results
is that no real differences existed between then =4 andn =8
conditions, only between these two conditions and the n = 12
condition. Although the n = 8 condition appeared to show
slightly less learning in some comparisons than the n = 4
condition, these comparisons were not statistically significant.
Moreover, it appears likely from these data that the baseline
learning ability of subjects assigned to then = 4 condition was
higher than that of subjects in the other two conditions. When
we compared an interval of pretraining trials shared by all
three groups (the second- to fourth-presented instances of
Category B), we found that learning was significantly higher in
the n = 4 condition than in the n = 8,7(22) = 3.40, SE = 0.084.
p < .01 and n = 12 conditions, 1(22) = 2.70, SE = 0.789,p <
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.02, but there was no difference between then = 8 andn = 12
conditions, #(22) = 0.77, SE = 0.096, p > .25. This suggests
that the unexpectedly high levels of learning observed in the
n = 4 condition during the test block were likely a spurious
outcome of random sampling, which by coincidence assigned
better learners to the n = 4 condition than to the other two
conditions in this experiment.

General Discussion

These three experiments showed powerful effects of the
sequencing of training instances on unsupervised learning.
These sequence effects are readily interpreted in terms of
subjects’ inventing partitions or categories for the stimulus
domain, but they are not easily accommodated within a simple
autocorrelational framework. Both practice (number of in-
stances presented from a given category) and transfer (how
instances of one category affect the norms of another) inter-
acted strongly with training sequence in these experiments.
Learning of a category normally improved with practice, but
only if subjects had explicitly partitioned the instance space.
For example, learning of Category B was reduced by present-
ing more instances of Category B in the pretraining block of
Experiment 2, because those extra instances of Category B
increased the difficulty of initially separating the two catego-
ries. Interference occurred when both types of instances were
pooled into a single category because pooling obscured the
correlational patterns each contained. However, this interfer-
ence was eliminated once subjects had learned to separate the
categories.

The major procedural difference between supervised and
unsupervised learning is that unsupervised subjects must
create their own categories and apply these categories without
feedback from an external tutor. The category invention
problem is thus central to the study of unsupervised learning.
Our results provide evidence for a nonincremental, contrast-
based category invention process in unsupervised learning.
Characterizing details of how this process works, the principles
that people use to decide when to create new categories under
different training conditions, and how this decision affects
other aspects of their performance (e.g., episodic memory for
instances) will be a central concern in further studies of
unsupervised learning.

A Role for Autocorrelation?

So far, we have argued that the sequence effects observed in
our experiments require an explicit process of category inven-
tion for their explanation. In particular, the superior learning
that occurred when categories were separated in the training
sequence was interpreted as being due to this category
invention process. However, the residual, or baseline, learning
that occurred in mixed training sequences (particularly in
Experiment 1), is yet to be explained. If categories must be
separated early in training for category invention to occur,
then how does the theory explain learning in mixed condi-
tions?

One possibility is that separate categories are created
whenever possible but that learning may occur by autocorrela-

tion in other circumstances. Our results do not imply that such
autocorrelation is never a factor in unsupervised learning. only
that this process alone cannot account for the sequence effects
observed here. One possible hybrid theory would incorporate
both category invention and autocorrelation; according to such
a theory, subjects would normally accumulate some informa-
tion about interfeature correlations as they processed succes-
sive training instances in a discrimination task. This would
enable them to learn correlational patterns eventually, even
without explicit category invention. Such a correlation learning
process might be relatively slow because a large matrix of
interfeature correlations would have to be learned in order for
a category to be acquired. Consistent with this prediction,
learning in the mixed conditions of these experiments was
slower than that observed in the blocked conditions.

Although the present results do not eliminate the possibility
of explicit autocorrelation in the mixed conditions, the results
can also be explained without such autocorrelation. In prin-
ciple, strict separation of categories in the training sequence
should not be required for category invention to occur. For
example, it might be assumed that learners in our experiments
may invent a new category with some probability, P, whenever
an instance is presented that is from a different category than
the stimulus presented on the trial before (e.g., when an
instance of Category B is presented on a trial following one or
more instances of Category A). The value of P would depend,
in part, on the strength of the Category A default values in the
norms for the single category that had been applied to all
instances up to that point in training. In a blocked sequence, P
would be high when the first instance of Category B occurred
because subjects would have learned strong Category A
defaults prior to encountering this instance. In a mixed
sequence, P would be lower because both Category A and
Category B defaults would be encoded as routine values in a
set of aggregated norms, and neither would cause a radical
mismatch with these norms nor a high probability of inventing
a new category when they were presented.

However, category. invention could still occur in a mixed
sequence so long as the value of P was not too low. To
illustrate, imagine that there was a 10% chance that the
learner would create a new category whenever an instance of
Category A occurred after an instance of Category B, or vice

_ versa. Assuming that instances from Categories A and B were

presented in alternation, the probability of creating a category
on or before the nth alternation is 1 — (1 — P)", which, for P =
-1, reaches 53% by the sixth alternation. However, category
invention would occur at different times for different subjects.
Some subjects might discriminate between categories virtually
from the start of training, others might do so later in the
sequence, and a few might fail to do so by the end of a given
training session. The data from such a process, averaged over a
group of subjects, would show much the same pattern of
apparently gradual learning predicted by the autocorrelation
theory.

In summary, these experiments cannot discriminate be-
tween pure category invention and a hybrid theory that
includes both category invention and autocorrelation. Al-
though the present data provide evidence for the existence of a
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category invention process. they cannot be interpreted as
evidence for the nonexistence of autocorrelation.

Generality of the Results

One objection to generalizing from these results to unsuper-
vised learning in the real world is that the stimulus variation in
these experiments was rather artificial and stereotyped com-
pared with the rich, complex variation typical of real-world
domains. This objection applies to almost all laboratory
research on category learning, which typically uses artificial
stimuli generated from combinations of as few as two or three
attributes. The purpose of the present experiments was to
evaluate the attribute-listing task as an index of unsupervised
learning in a relatively simple situation and to use it to make
elementary discriminations among models of learning in that
situation. Demonstrating that a process such as category
invention occurs under artificial conditions constitutes a pre-
fectly valid proof of the existence of that process, although it
leaves the issue of boundary conditions unexplored.

In principle, the basic attribute-listing method could be used
with many types of stimuli, including stimuli more complex and
naturalistic than those used in the present experiments.
However, complex stimuli should not change the basic pattern

of results (i.e., a shift away from listing predictable aspects of

the stimuli with an increasing focus on unpredictable informa-
tion as categories are learned).

Another sense in which the present stimuli appeared artifi-
cial was in the fact that the default values of each category
occurred with 100% reliability, that is, attributes were per-
fectly correlated. These experiments did not attempt to demon-
strate unsupervised learning of categories with probabilistic
defaults, which may limit the generality of the present results.
However, the attribute-listing procedure should be generaliz-
able to learning problems in which category defaults are
somewhat unreliable, assuming that people can learn such
categories without feedback. It is clear from subjects’ perfor-
mance in the present tasks that many of the fuzzy categories
used in standard supervised learning experiments, in which
diagnostic features are often highly unreliable (e.g., Estes,
Campell, Hatsopoulus, & Hurwitz, 1989; Homa, 1984; Medin
& Schaffer, 1978), might be very difficult for subjects to learn
without explicit feedback. This difficuity in learning would

simply reflect the greater difficulty of the unsupervised learn- -

ing task itself, which requires subjects-to generate their own
categories and internal feedback. The investigation of such

issues should provide interesting topics for future research and

will allow useful comparisons between supervised and unsuper-
vised learning.
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Abstract

These experiments investigated unsupervised category learning using tasks in
which subjects attempted to memorize the features of training instances from two
contrasting categories. On each trial, subjects studied a hidden verbal feature list -
(describing a training instance) one feature at a time for 24 sec, after which they received
multiple choice recognition tests to evaluate their memory for each feature. The amount
of time spent looking at each feature during the study phase, and the accuracy of
recognition during the test phase, provided separate indices of unsupervised learning on
each trial. Our main independent variable was the specific presentation sequence
(blocked vs. mixed) for instances from the two categories. Blocking produced far faster
learning, suggesting that subjects use an explicit "category invention" process, triggered
by contrasting examples, to capture the correlational structure of the stimulus domain.
The results also demonstrated the selective encoding and enhanced memory for instances
predicted by schema-based theories of learning. These results held true for categories
defined by probabilistic as well as deterministic default features.
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Instance and Category Learning in Unsupervised Tasks

The ability to learn and use categories is fundamental to human intelligence.
Categories inferred from examples may be acquired under two general types of training
conditions, referred to as supervised and unsupervised learning. In a typical supervised
learning experiment categories are defined in advance by an experimenter who also
provides relevant feedback (correct answers) so that subjects can gradually learn to match
their categories to the correct class of training instances. By contrast, in unsupervised
learning tasks subjects receive neither predefined categories nor feedback from an
external tutor. Rather, subjects must discover categories for themselves as they examine
a series of training instances, basing such categories on any patterns or regularities they
observe among these stimuli.

An extensive research tradition has accumulated in the study of supervised
learning (see, e.g., Bruner, Goodnow & Austin, 1956; Millward, 1971; Smith & Medin,
1981), but there have been comparatively few empirical studies of unsupervised learning.
One reason for this paucity of research may have been a lack of reliable measures of
category learning within such tasks. For example, the primary measure used in studies of
supervised learning - accuracy in assigning an instance to one of the predefined
categories - is by definition inapplicable to unsupervised learning.

Clapper and Bower (1991, 1994) developed and tested an index of unsupervised
learning which they called "attribute listing". The present article introduces a second
method for investigating unsupervised learning. In addition to providing information
about the abstraction of category norms from a series of training instances, the method
also provides information about how subjects’ discovery of a category alters and
economizes the way in which they process and remember individual instances.

Defining Categories in Unsupervised Tasks

Unsupervised learning can be defined in terms of subjects’ ability to detect and
learn about pre-existing structure or patterns within a set of training stimuli. Therefore,
to investigate such learning we should first describe the kinds of "patterns” or "structure”
we consider as giving rise to distinct categories, thus enabling us to evaluate subjects’
learning of them.

In this article, categories will be defined in terms of correlated (consistently co-
occurring) properties among training instances within a stimulus set. We adopt the
conventional vocabulary for describing training instances in terms of abstract dimensions
or attributes, each of which can assume a number of concrete values (Clapper & Bower,
1991, 1994). For example, people differ in the attribute of hair color, with blond, brown,
red, and black being possible values of this hair-color attribute. The specific value of an
attribute in a given instance is also referred to as a feature of that instance. In principle,
attributes may be either additive (with two values, present or absent) or substitutive (with
any number of alternative values, such as different hair colors; see, e.g., Tversky, 1977).
Attributes may also be discrete or continuous (e.g., ordered dimensions such as height or
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weight). In this article, only the discrete, substitutive case will be considered, although
the methods described should also be applicable to other cases.

For such stimulus domains, categories of instances may be defined in terms of
correlations among the values of these attributes (see Figure 1). Such correlational
structure provides an inductive basis for partitioning a domain into separate categories,
each corresponding to a particular set of correlated features (Garner, 1974). For example,
in Figure 1a, Category A is characterized by correlated values (denoted by a 1) on the
first five listed attributes, while Category B has different correlated values (denoted by a
2) on the same attributes. Category members differ in terms of the last three uncorrelated
attributes listed and these vary freely within each category.

Insert Figure 1 about here

Importantly, such correlational structure provides a learner with predictive
power: given that one correlated value is observed, the presence of the other four
correlated values can be inferred. This predictable structure may be contrasted with the
stimulus set illustrated in Figure 1b, in which all attributes of the stimuli vary
independently so there is no natural, informative way to partition the set into distinct
categories. In this uncorrelated set, knowing some attribute values of an instance does
not improve the learner’s ability to reliably predict any of its other values.

A second example of categories defined in terms of correlational structure is
shown in Figure 1c. Here, the values of all the attributes are correlated, but unlike Figure
1a, the attributes in Figure 1c are only imperfectly correlated. The correlational patterns
define two distinct categories, but the characteristic features of those categories occur
probabilistically, rather than deterministically, as in Figure 1a. However, even less than
perfect correlations can provide some predictive power, and many natural categories
appear to have probabilistic, rather than deterministic, features (Wittgenstein, 1953;
Rosch, 1975, 1977).

The correlated attribute values that characterize a given category will be referred
to in this article as its default features. The term "default” will be used whether the
correlated features occur with perfect reliability, or just with high probability. An
uncorrelated attribute that varies independently of the other attributes in its category will
be referred to as a variable attribute, and its specific values will be referred to as variable
values. An unusual or improbable value occurring in place of an expected default value
(as in Figure 1c) is dubbed an exception or default violation, since it violates the
correlational regularities that characterize the collection of instances.

Measuring Unsupervised Learning

Defining categories in terms of correlated values, a procedure can then be
designed to index subjects’ learning of a given category as they experience successive
training instances. In considering such tasks, we may distinguish between direct
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measures of categorization, in which subjects are explicitly instructed to group (or sort)
the training instances into salient categories and learning is evaluated in terms of
subjects’ success at this task, and indirect measures in which categorization is not an
explicit goal but category learning is evaluated indirectly by its influence on how subjects
perceive, evaluate, or remember individual training instances. An example of the former
task would be experiments in which subjects sort a set of stimulus cards into some
“natural” groupings (e.g., Miller, 1969). The latter approach will be illustrated by the
experiments described below, as well the "attribute listing” procedure described in
Clapper and Bower (1991, 1994).

We studied the learning of correlation-based categories using tasks in which
subjects’ goal was simply to memorize individual training instances; in fact, category
learning was never mentioned to subjects until their debriefing at the end of the
experiment. Subjects saw training instances composed of many attributes; some
attributes had correlated values (defining two contrasting categories), and others did not.
Instances corresponded to lists of several verbally described features, supposedly
belonging to different (fictitious) trees, presented to subjects on a computer screen. For
example, a given tree might be described as having dark grey bark, a high commercial
value, fast growth, and so on. Subjects were required to study each of these instance
descriptions (or feature lists) for a fixed study-time in order to prepare for a memory test
about it. During this time, the computerized display was arranged so that the subject
could look at only one feature at a time, although the subject could choose to inspect
different features for a self-selected time. After the study period, subjects received a
multiple choice test of their ability to recognize which features had occurred in the
previous instance. Two types of data were collected: (1) the time devoted to examining
each attribute value during the study period, and (2) the accuracy of remembering each
value of the instance during the testing phase that immediately followed its study.

If subjects in this task learned the categories (correlational patterns), the default
features of the individual training instances would become predictable. As a result of this
increased predictive power, subjects’ overall memory for the instances should increase.
Once subjects learned the patterns of correlated defaults, they should be able to
remember all the default features of an instance merely by remembering its category
membership (or a single default value diagnostic of that membership). Even if subjects
were unable to retrieve a given default value from their memory of the most recent
instance, they could infer its probable presence based on generic category norms
abstracted from previous instances.

In addition to this improvement in guessing defaults at the time of test, memory
for variable attributes should also improve due to changes in subjects’ attentional

-priorities during the study period. As subjects learn the defaults, they require less time to

encode them. Consequently, a rational learner with a limited encoding capacity and
limited time should assign a higher priority to learning variable or exceptional values of
instances, since these features of the instance cannot be inferred from category norms.
Thus, as more instances are seen, subjects learning the correlations of defaults within
categories should also show progressively more study and better memory for the values
of variable attributes, or for exceptional values that occur in place of an expected default,
compared to control subjects for whom all attributes of the stimuli are uncorrelated. 'In
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essence, subjects were expected to adopt an "uncertainty reducing” strategy when
learning the training instances, assigning highest priority to encoding those features of an
instance that are least predictable from category norms. These effects on attentional
allocation were measured directly in the present task, since the computer recorded how
long subjects spent studying each feature of the instances.

This task has several attractive properties as a method of studying unsupervised
category learning. First, facilitating episodic learning about specific objects or situations
is one important function of category knowledge. This adaptive function is illustrated by
many experiments which show that people better remember textual or pictorial
information when they can relate it to schematic knowledge about familiar scripts or
categories (e.g., Bransford & Franks, 1971). Similarly, experts in domains such as
electronics or chess are able to use their knowledge of general patterns (categories)
within those domains to remember stimuli or situations (e.g., a particular electronic
circuit or chess board configuration) much more accurately than novices lacking such
categories (e.g., Chase & Simon, 1973; deGroot, 1965, 1966). Given the sharply limited
capacity of people to learn random or meaningless material (e.g., lists of unconnected
facts), and the complexity of many naturalistic learning problems, this facilitation must
be extremely important to people’s ability to function intelligently.

A second advantage of studying category acquisition in the context of learning
individual instances is that such tasks make it possible to investigate incidental category
learning, in contrast to the intentional hypothesizing strategies typically adopted by
subjects in direct tasks which involve overtly sorting or classifying the patterns. The
present task enables the investigation of categories or patterns that "pop out" of the
learners’ stream of experience, as opposed to those they are able to uncover only by
deliberate search. A significant portion of people’s commonsense knowledge of the
world is probably acquired in such incidental fashion, although we know of no empirical
studies that directly address this issue.

Third, the effect of category knowledge, in the form of schemas, scripts, or
stereotypes, upon episodic memory is an important research topic in itself (e.g., Bower,
Black, & Turner, 1979; Graesser, Woll, Kowalski, & Smith, 1980; Srull & Wyer, 1989).
Most of this research has employed naturally acquired categories (e.g., the familiar
"restaurant script" of Schank & Abelson, 1977), and investigated memory for text or
pictures based on these categories. The present task offers a method of studying these
issues using artificial category knowledge synthesized in the laboratory under controlled
conditions. This greater control may eventually enable the investigation of factors that
would be difficult to study using only naturalistic materials. :

Theoretical approaches

While many techniques of conceptual clustering have been proposed in the
literatures of numerical taxonomy, psychological scaling, and artificial intelligence, most
of them have not been formulated as incremental learning procedures (Everitt, 1980;
Anderberg, 1973). We will postpone consideration of these clustering ideas until the
final discussion by which time we will have more facts in hand to aid in their evaluation.
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For immediate consideration, we will describe two general classes of incremental
theories regarding how unsupervised categories might be learned. One of these is based
on the idea of cumulative learning of inter-feature correlations; the other is based on the
idea of discrete invention of subjective categories about which norms are acquired.

Autoassociation models. One class of models that are applicable to the
unsupervised category learning task are autoassociators, often formulated within a
connectionist architecture. We consider these as serious, incremental models of human
category learning, and will examine how they might apply to our situation. We will
contrast these autoassociation models to another class which we will champion, dubbed
"category invention" models.

As their name implies, the autoassociators assume that subjects directly
accumulate evidence about pairwise feature correlations as successive instances of a
category are encountered. This approach is illustrated by the one-layer connectionist
autoassociation models of J. A. Anderson (Anderson, 1977; Anderson, Siverstein, Ritz &
Jones, 1977) and McClelland and Rumelhart (1985; Rumelhart, Hinton, & McClelland,
1986). It is also instantiated in rule-based systems such as those of Billman and Heit
(1988) and Davis (1985). By keeping a record over instances of the co-occurrence
frequencies of all (or many) possible pairs of attribute values, a learner could capture the
pairwise correlational structure of stimulus sets such as those in Figure 1 without
necessarily partitioning the domains into explicit categories. Information typically
provided by such a categorization would be implicit in an exhaustive co-occurrence
record; in fact, explicit categorization might actually lose or obscure certain co-
occurrence information if individual co-occurrences were to be replaced by the average
likelihood that each attribute value occurs within the category.

A category invention hypothesis. A second method of learning new categories in
unsupervised tasks postulates a discrete "category invention” process. In this method,
subjects acquire co-occurrence patterns by first hypothesizing a partition of the stimulus
set into separate, explicit categories corresponding to these patterns. Descriptive norms
or expectations about feature probabilities within each category are then stored in
separate data structures, such as prototypes or schemas (e.g., Posner & Keele, 1968;
Reed, 1972; Minsky, 1975; Rumelhart & Ortony, 1977; Schank & Abelson, 1977;
Schank, 1982; J.R. Anderson, 1991). By sorting stimuli containing different co-
occurrence patterns into different categories, and then computing conditional frequency
distributions within these categories, a learner could capture much of the same
information contained in a direct correlational record.

The major issue for the category invention approach is deciding when, and on
what basis, new categories should be invented. All theorists agree that learners are
practically forced to rely on the match or mismatch of each stimulus to existing
categories to decide whether or not to invent a new category (e.g., Schank, 1982;
Holland, Holyoak, Nisbett, & Thagard, 1986; Lebowitz, 1987; Fisher, 1987; J. R.
Anderson, 1991). Assuming that subjects create a new category at the start of the
experiment to describe the first training instance, they should continue assimilating
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further instances to this category until an instance is encountered that contrasts
(mismatchs) sufficiently with previous category norms to justify the creation of a distinct
second category. Any later instances similar to this initial "triggering" instance would
then also be assigned to the new category and should not affect subjects’ norms about the
first category. Separating expectations about different categories in this way would allow
new patterns to be learned without discarding or distorting norms learned about previous

categories.

Comparing Autoassociation to Category Invention

Since learning by category invention depends on contrast while learning by
autocorrelation depends on practice (i.e., accumulating evidence about feature
correlations over multiple instances), it is not surprising that they expect different
outcomes from certain types of experimental manipulations. In the present experiments,
we focus primarily on manipulations of the particular sequence in which instances of
different categories are presented. Specifically, we argue that a process of category-
invention-by-contrast should be more sensitive to manipulations of training sequence
than would be an autocorrelation learner. Moreover, the particular pattern of sequence
effects predicted by category invention cannot be easily reproduced by models restricted
to autocorrelation. If obtained in our experiments, the predicted sequence effects would
constitute strong evidence that our subjects were using stimulus contrasts to invent new
categories. These experiments, if successful, would constitute an "existence proof™ of a
discrete, non-incremental category invention process in unsupervised learning.
(However, the results could not be interpreted as strong evidence for the non-existence of
autocorrelation. We will return to this issue in the General Discussion).

Clapper and Bower (1994) reported several experiments which varied the
sequence of instances from two different categories, and the results implied that subjects
were using perceived contrast to invent separate categories. In one experiment, instances
of contrasting categories such as those shown in Figure 1a were presented to subjects
whose task was to list a few distinguishing features of each instance ostensibly in order to
prepare for a later memory test over the specific instances. One group of subjects in the
first part of the experiment saw instances blocked by category, i.e., 12 instances from one
category (referred to as "Category A") were presented prior to 12 instances from a second
category ("Category B"). Following these two single-category blocks, a mixed block
containing an equal number of test instances from both categories was presented in
random order. A second group of subjects saw the same final test block, but the 24
instances from the two previous blocks were randomly intermixed rather than separated
in the training sequence as in the Blocked group.

A category invention process predicts that the probability of creating a separate
category for the first instance of Category B should depend on its perceived mismatch
with the norms derived from prior Category A instances. For example, after seeing only
one or two instances of Category A, subjects’ expectations or norms about this category
would probably be rather vague and general; not enough data has yet been seen to begin
separating default from variable attributes. If an instance of Category B were presented
at this time, subjects might not perceive a confident mismatch between this instance and
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the norms for the previous instances of Category A. In the absence of a confident
mismatch of the current pattern with previous norms, subjects are likely to interpret the
changed defaults as simply variable attributes; they would thus assimilate the first
instance of Category B together with prior instances of Category A, resulting in a single,
overgeneralized category that would fail to capture the conditionalized covariations of
the default attributes. Further instances from either the A or B categories would then
appear consistent with this overgeneralized category. Due to this lack of contrast,
subjects should have difficulty abandoning this aggregated category and correctly
partitioning the stimulus set into separate categories corresponding to the conditionalized
patterns of co-occurring features.

In summary, a category invention process, which triggers new categories only as
old ones fail badly, expects that subjects should have difficulty learning with mixed
training sequences. The same categories should be distinguished more easily when
instances are presented in a blocked training sequence, because strong default norms
could be learned for the first category before the second was encountered, thus
highlighting the contrast between them. On the other hand, autocorrelation models do
not necessarily expect superior learning when instances from different categories are
separated in the training sequence, compared to being presented in mixed alternation.
Within the autocorrelational approach, mismatch or perceived contrast does not directly
affect learning because learners are assumed simply to increment inter-feature
correlational strengths based on the features of each instance. Instead, learning of
correlations should depend primarily on practice, i.e., the number of times particular pairs
of features co-occur across different instances. If learning is determined primarily by the
number of instances presented from a given category, then the particular sequencing of
instances (e.g., blocked vs. mixed) should be relatively unimportant to such a learning
process. Indeed, if the two categories of patterns are orthogonal, then learning will be the
same regardless of the sequencing of the sets of instances.

If poor learning is found in the mixed condition, an autocorrelation model might
explain it by assuming substantial interference or negative transfer between Category A
and Category B. This would arise, for example, if the network coding of the two
categories of instances overlapped to some degree. Given such interference, a category
might be learned more slowly in a mixed sequence with another category than if it were
presented alone. However, such an autocorrelation-with-interference hypothesis would
also expect the second-learned category to interfere greatly with the first-learned in a
blocked sequence, similar to that observed when subjects learn separate (blocked) lists of
paired associates in verbal learning experiments (e.g., the A-B, C-D paradigm of
Postman, 1971; Millward, 1971). Thus, learning the correlations of the second category
should cause retroactive interference and reduce subject’s memory for the correlations of
the first category. In connectionist autoassociators, this retroactive interference may be
particularly severe, a phenomenon sometimes referred to as "catastrophic interference”
(McCloskey & Cohen, 1989; Ratcliff, 1990). For the same reasons, learning the
correlational associations of the first category should result in negative transfer and slow
learning of the correlational associations that comprise the second category.
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Clapper and Bower (1994) found that categories were learned appreciably faster
in blocked than in mixed training sequences, and found no evidence for substantial
proactive or retroactive interference in blocked sequences. Those results suggested that
the slower learning in a mixed-sequence condition was due to a lack of contrast rather
than to interference in correlation learning. The result also provided evidence for a
discrete category invention process. One purpose of the present experiments was to
obtain converging evidence for the category invention hypothesis using a different
measure of instance processing.

Experiment 1

The first experiment employed a similar contrast between blocked and mixed
training sequences to that described in Clapper and Bower (1994) and it had two goals.
A first goal was to provide evidence for the basic validity of the instance memory
procedure, described above, as a method of investigating unsupervised category learning.
If the results of this experiment agreed with those of Clapper and Bower (1994), we could
be more confident of the validity of both tasks and the reality of the underlying processes
they presume to assess. The generality of our methods and theoretical conclusions would
be bolstered by the fact that the present experiments differed from the earlier studies both
in the nature of the task itself (instance memory vs. attribute listing) and in the type of
stimuli. To add generality, the present studies used verbal stimuli whereas the earlier
ones employed pictorial stimuli. In addition, the stimuli in the present experiment
contained a larger number of attributes than did those in previous experiments (12 instead
of 8). It is important to compare verbal and pictorial stimuli in research on unsupervised
learning because previous research indicates that verbal stimuli may be remembered and
compared differently than pictorial stimuli, which could also mean that they might be
categorized with somewhat different strategies (Paivio, 1971; Kosslyn & Pomerantz,
1977; Gati and Tversky, 1984).

Our second goal was to provide further evidence to discriminate the
autocorrelation vs. category invention hypotheses. The earlier attribute listing studies
provided evidence for category invention, and we hoped to replicate this support in the
present experiment.

Method

Subjects

The subjects were 43 undergraduate students of San Jose State University
participating in partial fulfillment of their Introductory Psychology course requirement.
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Materials

The training instances were verbal descriptions of 32 fictitious trees, presented in
a column-list format. The instances were characterized in terms of twelve substitutive
attributes, each with four possible values, defining a stimulus set of 412 distinct instances.
Examples of these attributes included the color of the tree’s bark (dark grey, deep brown,
mossy green, or light tan), its form or overall shape (low and shrub-like, tall and
column-like, massive and wide branching, twisting and vine-like), the season in which it
flowered (spring, summer, winter, or autumn), and so on. For nine of these twelve
attributes, only two of the four possible values were presented in the training instances,
although all four values appeared as alternatives in the multiple choice tests.

Procedure

Subjects were tested in groups of 10 to 15 in a computer lab for a one-hour
session. Each subject was seated at an individual microcomputer terminal that
administered the entire experiment. After subjects read the instructions presented on the
computer screen and signed a form indicating their informed consent to participate, the
main portion of the experiment began.

Each trial consisted of a study phase followed by a test phase. At the beginning
of the study phase, a verbal list was presented in the middle of the CRT screen. At the
top of the list was the name of a fictitious tree instance (these were arbitrarily selected
Latin names from a plant identification guide), below which appeared a list of twelve
verbal feature descriptors, one in each of 12 rows. (Every tree-instance had a different
name, so there was no suggestion that the name referred to a class or family of species).
Each row contained a verbal description of a specific value of a particular stimulus
attribute. The attributes were presented in the same serial order (screen locations) on
each trial, different for each subject.

At the start of the trial, each descriptor was masked by a row of X’s (see Figure
2a). Starting with the cursor at a random position in the list, subjects could look at the
descriptors by pressing a designated "line down" key or a "line up" key which removed
all the X’s and allowed subjects to examine the item (attribute value) on that one line.
The exposed attribute value on a given line was covered up again as soon as the subject
moved the inspection pointer to a new line (attribute). This procedure permitted subjects
to examine the features in any order they wished, and to spend as much time as they
wished studying any particular feature, although they were limited to a total study-time
of 24 sec for the entire 12-item list. The computer recorded the total amount of time a
subject spent looking at each attribute of each instance.

Insert Figure 2 about here
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In the test phase subjects were tested for their memory for the values of all
twelve attributes of the preceding instance. The twelve test questions were presented one
at a time in random order in a multiple-choice format (see Figure 2b). The name of the
most recent tree-instance appeared at the top of the multiple-choice display, with four
alternative answers below. These alternatives were the 4 different values of an attribute.
Subjects tried to remember which of these values occurred in the last-studied instance
and typed in the number corresponding to that choice on their computer keyboard.
Following this response, the computer displayed either a "correct" or an "incorrect”
prompt under the test display, which remained on the screen. If the response was
incorrect, the correct choice was indicated by an arrow in the display (see Figure 2c).
The subject then pressed the "Return” key to see the next test question.

After answering the twelve test questions about a given instance, subjects
received summary feedback for the trial. The percentage of items answered correctly on
that trial was displayed, and below this the average percentage correct pooled over all test
trials completed up to that point. If the trial score was higher than the cumulative score,
the message "Good job! You beat your overall score!" appeared on the screen; if not, the
message "Try to beat your overall score next trial" was displayed. If the subject answered
all the test questions correctly on a given trial, the message "Good job! Your score was
perfect!" was displayed. By pressing the Return key, subjects moved on to studying the
next instance in the training series.

The twelve attributes were tested in a different random order on each trial, and
the order in which values were listed in the multiple-choice display was also randomized
separately on each trial. The experiment consisted of a total of 32 such instance study-
test trials. Following this, subjects read a debriefing sheet that informed them of the
purpose and methods of the experiment.

Design

Subjects were randomly assigned to three different conditions. In the two
correlated conditions the values of the nine two-valued attributes were perfectly
correlated across different training instances. The instances could be partitioned into two
distinct categories based on these correlated values. Using the notation of Figure 1, the
categories were Category A = 111111111xxx and Category B = 222222222xxx, where
the first nine attribute positions denote the correlated defaults, and the x’s indicate
uncorrelated attributes that vary independently through all four values across different
instances within a category.

The two correlated conditions differed in the order in which the first 24 of 32
instances were presented. In the Blocked condition, the first twelve instances were all
members of Category A and the second twelve instances were members of Category B.
The final eight trials provided a test series consisting of four A-instances and four B-
instances presented in a randomly intermixed sequence. The Mixed condition differed
from the Blocked condition only in the order in which the first twenty-four instances
were presented, i.e., in a randomized sequence rather than Blocked by category. The
randomization procedure was so constrained so that no more than three instances from
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the same category appeared in a row. The final eight trials for the Mixed condition were
identical to those of the Blocked condition.

The uncorrelated or Control subjects saw instances without categories because
all the attributes of the training instances varied independently. As in the correlated
groups, nine of the twelve attributes varied through only two values in the training
instances, while the remaining three attributes varied through four values. But, because
the attribute values in this condition were uncorrelated, there was no structural basis for
partitioning the stimuli into separate categories.

The final eight (test) instances presented in the Control condition were identical
to those of the two correlated conditions, viz., had correlated values. This final block of
correlated instances will be referred to as the test block for all three groups. Subjects in
the Control condition were expected to show hardly any learning during this test block,
providing a baseline against which to evaluate any learning observed in the other two
groups.

Counterbalancing

The stimuli for all subjects in a given condition were generated by the testing
program from the same input file, which contained coded specifications for generating
the instances presented on each trial. Stimuli generated from these codes were presented
in the same file order for all subjects in all three conditions, allowing unbiased
comparisons of learning across different groups. The correspondence between serial
positions in the codes and the order in which an attribute was listed on the computer
screen in the training instances was randomized for each subject. These random
assignments were undertaken to balance out any idiosyncratic effects of particular
attributes, values, or combinations of values, as well as serial position in which the
attributes were presented.

Results and Discussion

The two dependent variables recorded on each trial of this experiment were (1)
study-times for default and variable attributes during the study phase, and (2)
recognition-memory accuracy for defaults and variables during the test phase. The data
for this experiment is shown in Figure 3. The main indicators of category learning are (1)
subjects’ overall accuracy of remembering the attribute values of each instance,
computed by averaging the accuracy of remembering defaults and variable features; (2)
subjects increasing the time they spend studying variable rather than default features of
each instance as categories are learned; and (3) an increase in memory for variable
features, probably caused by this increased study-times during the encoding phase.

Insert Figure 3 about here
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The category invention hypothesis predicts that category learning should be
greater in the Blocked than in the Mixed condition, and, of course, expects no category
learning to occur in the uncorrelated, Control condition. These expectations were largely
confirmed by the present data. Data analysis in this and later experiments involves large
numbers of comparative t-tests of significance. Rather than recite a flurry of t-statistics,
as a favor to readers we will adopt throughout a p < .01 criterion for significance and
simply state which comparisons are or are not statistically significant by that criterion.
Readers interested in actual t’s and dfs may consult the authors.

Memory Accuracy

Figure 3a for the Blocked condition indicates that recognition memory for

" instances’ values improved rapidly over the first several instances of both Category A and
Category B. Averaged across defaults and variables, overall accuracy increased
significantly from 0.66 on the first instance of Category A to an average of 0.93 on the
last two trials. Accuracy dropped significantly to 0.71 when the first instance of Category
B was presented on the 13th trial. But a similar pattern of increasing accuracy was then
observed over succeeding instances of Category B, with accuracy increasing and leveling
off around 0.97 (averaged over the last 6 instances of the Category B Block).

The Blocked subjects showed a slight drop upon encountering the first A instance
in the mixed test block, and overall memory performance during this block was
somewhat lower (reliably) than performance during the preceding Category B-block
(comparing the average of the last 6 trials of the B-block to the average of the 8 test
trials). However, when the first A-instance was excluded from the test scores, the
memory performance for A and B instances was about the same during the test trials.
Thus, there was only slight evidence (one trial) for any retroactive interference of
learning Category B upon memory for the defaults of Category A.

In contrast to the category learning in the Blocked condition, the instance
memory data showed little evidence of learning in either the Mixed or Control
conditions; in fact, the latter two conditions did not differ reliably. Memory accuracy in
the Blocked condition was significantly greater than in both the Control and Mixed
conditions. These comparisons remained significant when restricted to the final 8 test
trials; averaged over the test block, accuracy percentages were 0.24 higher in the Blocked
than in the Mixed condition, and 0.29 higher than in the Control condition.

Study Time Results

The study-time data revealed much the same pattern of significant differences as
the recognition accuracy data. In the Blocked condition, the mean study-time pooled
over all 32 trials was 1.78 seconds for defaults significantly below the 2.91 sec observed
for variable attributes. Examining the mean difference scores plotted over trials in Figure
3b, the preference for studying variable attributes clearly increased throughout the
Category A block, from .18 sec on the first trial to 2.01 sec on the twelfth and final trial
of this block. Moreover, the preference for studying variables was still increasing at the
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end of this first block.

Upon shifting to the B-block, the preference index dropped significantly on the
first B-trial, from 2.01 on the final trial of the A-block to -0.125 sec on the first B-trial.
This coincided with subjects’ increased inspection of the novel values of the default
attributes, taking time away from inspecting variable attributes. Learning seemed to
occur somewhat more rapidly during the Category B-block, so that preferential
inspection times had leveled off after the sixth B-instance. Comparing the a and b panels
of Figure 3 for Category B, memory accuracy appears to have leveled off on about the
same trial as did differential study-time to defaults versus variables.

The Blocked subjects’ preference for studying variables decreased somewhat
when the first A-instance was presented during the mixed test block, compared to the
average of the preceding six B-instances. However, the results in Figure 3b clearly show
that the preference for studying variables over defaults remained high throughout the test
block. This result is important because it indicates that the apparent learning observed
earlier in the blocked training sequence was not merely due to localized habituation to
"consecutive” default values, but rather to subjects acquiring and retaining stable norms
for the two categories.

Consistent with the recognition memory data, the study-time data for Blocked
subjects showed no evidence of retroactive interference due to Category B trials upon
performance with Category A. Excluding the surprising first A-instance of the test block,
instances of the two categories yielded about the same study-time preference scores
throughout the test block. The slightly lower preference scores for instances of both
categories during this test block, compared to the six preceding B trials (p < .02),
probably reflect subjects’ need to sample enough of the default features to confidently
categorize the instances of the test block. In contrast, during the earlier blocks, when
category membership was constant over blocks of trials, subjects could spend less time
checking the default features of each instance.

Turning to the Mixed condition, variable and default study-times were nearly
equal (means of 2.04 and 2.07 sec, respectively) as reflected in the preference scores (in
the lower panel of Figure 3b) hovering around zero with no apparent trends. The data for
the uncorrelated Control condition were similar to those of the Mixed condition in
showing no learning trends. Study-times for variable features averaged only about .06 sec
greater than default study-times, a non-significant difference.

Between-group Comparisons

Consistent with these within-group analyses, direct comparisons between groups
provided further evidence for superior learning in the Blocked condition. The average
study-time preference score of 1.14 sec observed in the Blocked condition was
significantly greater than the 0.06 sec and 0.03 sec effects observed in the Control and
Mixed conditions, respectively. Subjects in the Blocked condition, in contrast to the
other two groups, significantly increased their study-time to variable attributes as they
acquired default norms for the two categories. Correspondingly, their memory for
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variables averaged 0.23 better than that of subjects in the Mixed condition, and 0.24
better than that of subjects in the Control condition.

Subjects showed higher memory for defaults than for variables in all three
conditions. Within the Blocked condition, memory for defaults (0.93) was reliably
higher than that for variables (0.83). In the Mixed condition, defaults were remembered
with an average accuracy of 0.65, which is reliably higher than the variables’ accuracy of
0.60. The Control group also showed significantly higher memory for attributes with 2
values (the "default equivalent”) than those with 4 values (0.65 vs. 0.58).

This greater memory for defaults in the Mixed and Control conditions could have
been due to: (1) Mixed subjects’ ability to retrieve correlated default values from their
category norms, whereas the values of variable attributes had to be recorded afresh for
each instance, or (2) higher guessing of the correct value of two-valued "default”
attributes presented during the study phase, compared to the four-valued "variable"
attributes. Since there was no other evidence of default learning in the data for the Mixed
and Control conditions, the differences obtained in these two conditions were probably
due to the guessing factor, and their order reverses when choice percentages are corrected

for guessing.

The increased memory for both defaults and variables in the Blocked condition
indicates that category learning facilitates encoding of both predictable and unpredictable
features of instances. This result replicates earlier ones showing that category knowledge
improves memory for both default and non-default properties of instances (Clapper &
Bower, 1991), and supports the encoding assumptions of schema theories. Such theories
usually assume that learners focus on those aspects of an instance that are surprising or
unpredictable with respect to norms stored in the category schema, while backgrounding
expected defaults (see, e.g., Bower, et al., 1979; Graesser, et al., 1980). This pattern was
observed in the study-time data from the present experiment, and the recognition memory
data provided further verification.

To summarize, the pattern of results from both study-times and recognition-
memory accuracies support the category invention approach in that learning in the
Blocked condition was much better than in the other two groups. There was little
evidence for negative transfer due to learning Category A upon subsequent learning of
Category B in the Blocked condition; in fact, learning of the second category was
achieved as quickly as the first. Nor did Category B learning in the Blocked condition
cause more than minor interference in remembering Category A. The autocorrelation-
plus-interference hypothesis expects that Blocked subjects’ performance on Category A
instances during the test block should have been greatly reduced by retroactive
interference from interpolated learning of Category B. However, after the momentary
surprise of seeing the first A-instance in the test block, subjects performed equally well
with the two categories during the remaining tests. This absence of interference
contradicts a prediction of autocorrelation theories, i.e., if interference occurs between
categories in a mixed sequence, then it should also occur for learning in a blocked
sequence. These results are difficult to explain within a strictly autocorrelational theory,
and imply that people in unsupervised learning tasks accommodate stimuli that mismatch
existing category norms by inventing new categories.
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Experiment 2

Experiment 1 demonstrated the utility of the instance-memory task as a measure
of unsupervised learning for categories distinguished by deterministic defaults, i.e.,
perfectly correlated attribute values. Experiment 1 also provided evidence that subjects
used a discrete category invention process based on perceived contrast to learn these
correlational patterns. These results are consistent with earlier results of Clapper and
Bower (1994), in which similar evidence for discrete category invention in domains with
deterministic correlational patterns was obtained using the attribute listing task.
Experiment 2 attempts to extend these results to categories characterized by
probabilistic, rather than deterministic, defaults.

This experiment was similar to Experiment 1 comparing Blocked vs. Mixed vs.
Uncorrelated Control conditions, except the categories were defined by probabilistic
feature correlations similar to those shown in Figure 1c. All the attributes of the stimuli
in Experiment 2 were correlated and there were no consistently variable attributes. Thus,
the features of an instance were either defaults or exceptional values (default violations).
Instances within a category differed in the number of exceptional values they had (0, 1, or
2), and the particular attributes which had exceptional values. As in Experiment 1,
learning in the different conditions could be ordered in terms of subjects’ ability to
remember both default and non-default features of the instances, as well as their tendency
to study non-defaults longer than defaults during the study phase of each trial.

We expected the results of this experiment to be similar to those of Experiment
1. First, subjects were expected to demonstrate unsupervised category learning in the
correlated groups (particularly in the Blocked condition) compared to the uncorrelated
control group. Such a result would demonstrate the possibility of unsupervised learning
of categories with probabilistic defaults, thus enhancing the utility and generality of the
current instance-memory task and our general approach. Second, subjects in the Blocked
condition were expected to show better learning than subjects in the Mixed condition,
since blocking highlights the contrast between the two correlational patterns, thus
facilitating the invention of separate categories to describe them. Such a result would
provide further evidence for the importance of discrete category invention in
unsupervised learning.

Method

Subjects, Materials, and Procedure

The subjects were 36 students of San Jose State University participating in partial
fulfillment of their Introductory Psychology course requirement. As in Experiment 1, the
training instances were verbal descriptions of fictitious trees presented in a list format on
a computer screen. Each instance was described by 12 attributes, each of which had 4
possible values. The experimental procedure was identical in most respects to that of
Experiment 1 with study-time and recognition memory data collected on each instance.
The experimental session consisted of 36 trials plus instructions and debriefing. Subjects
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were tested in groups of 10 to 15 for a single session lasting approximately one hour.

Design

Subjects were randomly assigned to 3 different conditions, similar to those of
Experiment 1. In 2 of these conditions, the values of all 12 attributes were strongly (but
not perfectly) correlated, such that the stimulus set could be partitioned into 2 distinct
subsets or categories based on these correlated values. These categories may be denoted
as Category A= 111111111111 and Category B = 222222222222,

Within each category, one-quarter of the instances had no exceptional values,
one-half had a single exceptional value, and the one-quarter had 2 exceptional values.
Since each instance had 12 attributes, these variations imply that default values occurred
with an average probability of 0.92 within a given category. Exceptional values occurred
equally often on all 12 attributes.

Different exceptional values were used for the two categories as illustrated in
Figure 1c. To illustrate, instances of Category A, in which value #1 was the default, had
value #3 as the exceptional value (e.g., 111311111111), whereas in Category B, value #2
was the default and value #4 was exceptional, (e.g., 4222224222222). These numerical
codes were chosen arbitrarily and their specific assignment to stimulus attributes such as
"leaf shape" or "bark color" was random for each subject.

In the Control condition, the relative frequency of the different values was the
same as in the correlated conditions, but in this group there were no correlations among
the values to define distinct categories. Thus, although values 1 and 2 occurred much
more frequently than values 3 or 4, as in the correlated conditions, all attributes varied
independently over instances so that no attribute value of an instance predicted any of its

other values.

As in Experiment 1, the two correlated conditions differed in the order in which
the first 24 (out of 36) instances were presented. In the Blocked condition, the first 12
instances were from Category A and the second 12 instances were from Category B. In
the Mixed condition, the first 24 instances were presented in an intermixed sequence of
As and Bs (i.e., no more than 3 instances from the same category could occur in
succession). In both conditions, the first instance shown of both the Category A and
Category B blocks had no exceptional values; this ensured that subjects would see the
correct default values of all 12 attributes of each category before they saw any
exceptional values. The final 12 test trials for all conditions consisted of 6 instances from
each category presented in an intermixed sequence.

As in Experiment 1, stimuli were generated from coded specifications from a
computer file and the same counterbalancing procedures were used as before.
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Results and Discussion

The data collected in Experiment 2 were similar to those of Experiment 1. The
accuracy of recognition memory and study-time data from this experiment are displayed
in Figure 4.

Insert Figure 4 about here

Pretraining Trials

As in Experiment 1, the data show greater learning of category norms during the
pretraining phase (the trials prior to the final 12-instance test block) of the Blocked
condition than during corresponding trials in either the Mixed or Control conditions.
When subjects’ recognition accuracy averaged over all features of the instances is plotted
over trials, the Blocked condition shows the same pattern of rapid acquisition for each
category as in Experiment 1. Memory for Category A instances increased rapidly (from
0.40 to 0.91) over trials of the Category A block, dropped (to 0.62) when subjects were
surprised by the first instance of Category B on the thirteenth trial, but their instance
memory increased rapidly again as Category B was learned, reaching about the same
asymptotic level (0.94) as for Category A.

Whereas subjects in the Blocked condition appeared to learn rapidly the default
values of each category, subjects in the other two conditions showed little evidence of
learning during this initial phase. Averaging over the 24 initial trials, overall memory
was significantly higher in the Blocked condition than in the Mixed and the Control
condition, whereas the latter two conditions did not differ during this phase.

Consistent with this pattern of memory data, during pretraining subjects in the
Blocked condition showed longer study-times for exceptional values than did subjects in
the other two conditions. Subjects in the Blocked condition studied exceptional values
reliably longer (3.02 sec) than default values (2.01 sec). Subjects in the Mixed condition
also studied exceptions slightly (and significantly) longer than defaults during pretraining
(2.31 vs 2.07 sec). Comparing the two groups, Blocked subjects studied exceptions
significantly longer than did the Mixed subjects.

Subjects in the Control condition also showed a marginal tendency (p < .10) to
study infrequent values (corresponding to exceptions in the other two conditions) longer
than frequent values (corresponding to defaults), but they did not exceed the time that
Mixed subjects spent studying exceptions.

Although these study-time results were consistent with the recognition memory
data described previously, the study-time data, when plotted over trials, exhibited more
variability than the smooth recognition learning functions (see Figure 4b). In part, this
variability in study-times may reflect the few exceptions per trial plus the fact that
exceptions occurred on different attributes on random trials. This positional uncertainty




J. P. Clapper Unsupervised Learning
20

may have caused some subjects to miss (not sample) a hidden exceptional value on any
given trial, thus missing the opportunity to study it longer. This factor would increase the
variability of the study-time data across subjects and trials within the Blocked condition.

Although subjects in the Blocked condition spent significantly more time
studying exceptions than did subjects in the other two groups, memory for exceptional
values did not differ significantly among the three groups. (Memory in the Blocked
condition exceeded that in the Mixed condition by 0.09 and that in the Control condition
by 0.08; these differences failed to attain significance due to the large variability). As
expected, within the Blocked condition, memory for exceptions (0.74) was significantly
poorer than for defaults (0.87). In contrast, memory for default vs. exceptional values did
not differ reliably in either the Mixed or the Control condition. This pattern is consistent
with the prediction of greater default learning in Blocked condition compared to the other

two.

In addition to being remembered more poorly than defaults, an exceptional value
on one trial produced a "carry over" effect in that subjects in the Blocked condition
perseverated in studying that (now reinstated) attribute longer on the following trial. On
the following instances, subjects in the Blocked condition studied the attribute that had
been exceptional earlier for 0.13 seconds longer than average, a marginally significant
effect (p < .10). This carry-over effect was not significant in either the Mixed or the

Control groups (both p > .10).

Although encountering an exceptional value caused Blocked subjects to attend
more to the same attribute on the following trial, their memory for this default value on
that trial actually decreased (by 0.11) compared to their average default memory. This
temporarily poorer memory for the default may reflect proactive interference stemming
from retrieving the exception-value of the prior instance. This carry-over effect was
absent for the other two groups.

The fact that these carry-over effects were larger in the Blocked than the other
two conditions seems to indicate that exceptional values were more surprising or
unexpected in that condition, as would be predicted if Blocked subjects formed stronger
default expectations than did those in the Mixed or Control groups. The existence of
such effects suggests that default norms were temporarily reduced in strength when an
exceptional value occurred.

Final Test Block

The initial pattern of results, with strong learning in the Blocked condition but
hardly any in the other two conditions, was greatly attenuated when instances of the two
categories were presented in mixed alternation during the final test block. The memory
advantage of the Blocked over the Mixed condition that was present during pretraining
disappeared during the test block. Recognition accuracy of Blocked subjects dropped
from 0.94 to 0.78 during the test trials, a level that was not significantly higher than that
of Mixed subjects. Nonetheless, during the test block both correlated groups continued
to reveal evidence of learning when compared to Control subjects whose recognition
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memory averaged only 0.60 during the test trials. Although recognition of both defaults
and exceptions declined somewhat during the test block for the Blocked condition, the
difference between them remained significant; on the other hand, this memory difference
never approached significance for the Mixed or Control groups.

Consistent with the memory data, study-times for exceptional values indicated a
sharp drop (from 3.02 to 2.40 sec) between the pretraining and test phases for Blocked
subjects, whereas Mixed subjects remained at the same level (2.47 sec) during the two
phases. Both Blocked and Mixed groups showed longer study-times to exceptions during
the test block than did the Control group, but the differences fell short of statistical
significance. Also, the carry over effects due to an exceptional value that were
measurable for both study-times and memory during the pretraining phase of the Blocked
condition were reduced to insignificance during the test block.

Implications

The results of this experiment demonstrate that categories can be acquired in an
unsupervised task even when the default values of those categories occur with less than
perfect reliability. The pattern of results that imply such learning arose most strongly
during the pretraining phase for the Blocked condition, but also occurred in attenuated
form during the test phase of both the Blocked and Mixed conditions. Learning was
indicated by the increased accuracy of recognizing the features of each instance,
especially defaults which could be inferred from category norms. Accompanying this
improved default memory was a tendency to study exceptional values for a longer time
and to show some improvement in memory for these values (although the latter effect
was not statistically significant here). In addition, encountering an exceptional value on a
given attribute appeared to reduce temporarily the expectedness of its default value, i.e.,
subjects showed some tendency to increase study-times for default values following an
exceptional value of the same attribute in the previous instance, and were less accurate in
remembering it due to proactive interference.

Perhaps the most important difference between the results of Experiments 1 and
2 was the attenuation of learning that occurred in the Blocked condition of Experiment 2
when instances were presented in mixed sequence during the final test block. Consistent
with the predictions of category invention, initial learning did appear to occur more
rapidly in the Blocked than in the Mixed condition. But the fact that learning in the
Blocked condition did not exceed that of the Mixed condition during the test block
weakens the evidence for probabilistic category invention provided by this experiment.

Recall that the results of Experiment 1 also showed slightly reduced performance
during the final mixed test block compared to the earlier single-category pretraining
blocks. However, in that case the attenuation did not eliminate the significant differences
between conditions as in the present experiment. The attenuation of test-block
performance that occurred in both experiments was probably due to the greater
uncertainty about the categorization of each instance in a mixed compared to a blocked
sequence. This greater uncertainty would make it more difficult for subjects to remember
the category membership of each instance, forcing them to spend some time rehearsing
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this categorization during the study period, presumably at the expense of focusing
specifically on the non-default features of each instance. This added memory demand
could lead to reduced learning effects in both the memory and the study-time measure.

The fact that the attenuation in the present experiment eliminated the test-trials
difference between the Blocked and Mixed condition, whereas these differences
remained significant in Experiment 1, is presumably related to differences in the types of
informative values used in these two experiments. The frequent occurrence of
exceptional values in Experiment 2 may have weakened subjects’ category norms,
making them more vulnerable to mutual interference and confusion. Thus, subjects in
the Blocked condition of Experiment 2 might have suffered significant forgetting of their
Category A defaults during the block of Category B instances. In turn, this forgetting of
the Category A pattern may have resulted in decreased performance and confusion
between categories in the mixed test block.

The present results raise the possibility that, even after subjects learn to
distinguish separate categories, they may still have difficulty keeping straight all their
elements. Thus, while category invention would enable subjects to capture correlational
structure relatively efficiently without having to learn a large matrix (22 x 22 here) of
interfeature co-occurrences, such categories still appear to be somewhat subject to
interference from related categories. Analogously, although subjects in standard verbal
learning experiments are quite aware that they are learning two or more distinct lists, akin
to different categories in the present experiment, they still show appreciable interference
and forgetting due to learning multiple lists (see, e.g., Postman, 1971; Millward, 1971).

Experiment 3

This experiment aimed to provide further evidence for category invention. The
invention process depends strongly upon subjects perceiving a surprising contrast -- a
novel instance that breaks strong expectations. By comparison, an autocorrelation
approach emphasizes simple frequency of experiencing co-occurring features as
important for accumulating data regarding their correlation. In Experiment 3, we pit the
"contrast” manipulation against frequency-of-covariation to see which is more potent in
promoting the acquisition of categories in an unsupervised environment.

In the Contrast condition of Experiment 3, subjects were presented with a long
series (16) of Category A instances before seeing a mixed test block of A and B
instances. These subjects should learn strong defaults for Category A during this
pretraining, so that they should be likely to invent a second category when surprised by
the first B-instance. Moreover, they should be able to maintain the separate integrity of
the first-learned Category A norms as they respond to the mixed series of A’s and B’s.

The Contrast condition was compared to a Practice condition, in which the
pretraining consisted of an equal number of instances (8) from both categories, presented
in mixed sequence, after which they saw the same mixed test block as did the Contrast
subjects. According to a frequency-of-covariation account, the Practice subjects should
exceed the Contrast subjects in learning the feature correlations underlying the B
category, since they will have seen 8 exemplars of these correlations during the first
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phase of the experiment, compared to none for the Contrast condition. Similarly, having
fewer A instances in the first phase should produce less interference (than in the Contrast
condition) for the Practice subjects to learn the correlations underlying the B category.

In contrast to these predictions, the category invention hypothesis predicts that
the early mixing of A’s and B’s should mislead subjects into assimilating them to a
single, overly general category so that they fail to notice and record contingent
covariations. The early mixing of As and Bs makes it difficult to discriminate default
from variable attributes. On the other hand, the novel surprise arranged for the Contrast
subjects should trigger their invention of a B category distinct from their A category, and
thus provide a basis for their noticing and recording contingent covariation of features
using the two categories. It is this separate maintenance of category norms that then
permits the Contrast subjects to respond appropriately to instances of Category A vs.
Category B during the final block of trials.

In sum, category invention expects better learning of Category B in the Contrast
condition, even though the only difference between the Practice and Control conditions is
that in the former, eight instances of Category B were replaced with instances of
Category A. Such a contrast effect would indicate the importance of subjects’ perception
of contrast or mismatch between categories in their unsupervised learning. Such results
would falsify the prediction of an autocorrelation approach that experts, all else being
equal, learning of correlations should increase with practice. '

Method

Subjects, Materials, and Procedure

The subjects were 31 students of San Jose State University participating in partial
fulfiliment of their Introductory Psychology course requirement. The experimental
procedure was identical to that of Experiment 1 and consisted of 40 trials plus
instructions and debriefing. The descriptions of tree instances were designed according
to the same specifications used in Experiment 1 and the training instances were
partitioned into the same two categories based on correlations among nine of the twelve
stimulus attributes.

Design

Subjects were randomly assigned to two conditions differing only in the
sequencing of the training instances. In the Contrast condition, instances of Category A
were presented for the first sixteen trials, referred to as the pretraining block. Following
this pretraining, a mixed test block of twelve instances of each category occurred in
random order (randomized for each subject). In the Practice condition, the pretraining
block consisted of eight A-instances and eight B-instances presented mixed together in a
random order. After pretraining, they then had the same test block of 12 As and 12 Bs as
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did the Contrast subjects.

In both conditions, instances were so constructed that all four values of each
variable attribute occurred an equal number of times within each category; within this
constraint, values of these attributes were assigned randomly. The same stimulus set was
presented to all subjects in a given condition, but the order of specific instances within
the pretraining and test blocks was randomized anew for each subject.

Results and Discussion

The same types of data were collected in this experiment as in Experiment 1.
The average study-times and recognition-memory accuracies are displayed in Figure 5.
The main prediction of the category invention theory is that strong learning would occur
in the Contrast condition while relatively little learning would occur in the Practice

condition.

Insert Figure 5 about here

Contrast Condition: Recognition Memory

Consistent with these expectations, both recognition memory and study-time data
showed evidence of significant learning in the Contrast condition. Turning first to the
recognition memory data averaged over all 40 trials of the experiment, Contrast subjects
remembered defaults with a mean accuracy of 0.94, which was significantly higher than
the 0.84 for variables. Learning occurred rapidly during the pretraining A-block, with
recognition memory increasing from 0.48 on the first trial to 0.88 on the eighth trial (see
Figure 5a). Thereafter, memory for Category A instances remained high and stable for
the remainder of the pretraining and throughout the test block.

Accuracy decreased sharply on the first B-trial of the test block, compared to the
preceding A-trial. Thereafter, accuracy increased from 0.68 to about 0.93 and remained
stable thereafter. Asymptotic accuracy of Category B was about equal to that of
Category A. Thus, prior learning of Category A appeared not to impair learning of
Category B, as would have been expected by autocorrelation models that include
associative interference.

Contrast Condition: Study-Time

The study-time data showed a pattern of rapid learning in the Contrast condition
similar to that shown by the memory data (Figure 5b). Over all initial trials, variable
attributes were studied 1.33 sec longer than defaults. During pretraining, the preference
index increased significantly from -0.16 on the first trial to 2.08 sec on the sixteenth trial.
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Preference scores dropped significantly on the first B-instancet trial compared to
the preceding A-trial (2.08 sec vs -0.19 sec). The -0.19 score means that subjects
regarded the new defaults of the B-category as highly informative on that trial, and
therefore studied those novel defaults slightly longer than the variable attributes.
However, preference for examining variable attributes increased rapidly over the twelve
B-instances in the test block, implying rapid learning of the B-norms. Final learning of
Category B equaled that of Category A.

Overall, the Contrast condition showed strong learning of Category A during the
pretraining block, no significant reduction of this A-learning during the mixed test block,
and strong B-learning during the test block. Since final learning of Category B did not
differ from that of Category A, it appears that there was no significant interference
between the categories in this condition.

The Practice Condition

The Practice condition was similar to the Mixed condition of Experiment 1, and,
as before, produced little evidence of significant learning. Recognition accuracy was
significantly greater for defaults (0.72) than for variables (0.64). Variables were studied
slightly longer than defaults in this condition, but insignificantly so. Since the study-time
data showed little evidence of learning by subjects in this condition, their greater
accuracy in verifying defaults compared to variables was probably due mainly to better
guessing of the correct values of defaults (which presented only two values within the
training instances) than of variable attributes (which had four values presented).

Comparing the Two Conditions

Direct comparisons of recognition memory between the two groups (see Figure
5a) supported the conclusion that significant category learning occurred in the Contrast
condition but not in the Practice condition. Instance memory for the Practice subjects
was essentially constant from Trial 2 onwards. Overall memory for instances was
significantly greater in the Contrast condition during the test block, for both Category A
and B.

The difference in learning between the Contrast and Practice conditions was also
supported by comparisons of the study-time data from the two groups (see Figure 5b).
The mean study-time preference for studying variables was 1.33 sec in the Contrast
condition, which was significantly greater than the corresponding 0.23 sec preference in
the Practice condition. This comparison was significant for both categories and remained
so when examining only the final test block (which was identical in both conditions).

In addition, recognition-memory was greater in the Contrast condition for both
defaults and variables. Contrast subjects’ better learning of variable attributes (compared
to Practice subjects) is consistent with their greater preference for studying variables.
The result suggests that Contrast subjects used their category knowledge to improve their
learning of both predictable and unpredictable features of the instances.
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The finding that Category B was learned better in the Contrast than the Practice
condition was the basic "contrast effect” we were seeking. An autocorrelation process
would seem strained to accommodate this apparently paradoxical finding, that decreasing
the number of instances studied from a given category (i.e., Category B) increases later
learning of that category. A strictly autocorrelational approach also would have expected
some interference in learning the feature correlations in the Contrast condition; yet none
seems to have occurred. Thus, this contrast effect provides strong evidence that subjects
used category invention to capture the correlational patterns in the present experiment.

Experiment 4

The purpose of this experiment was to replicate the contrast effect obtained in
Experiment 3 and extend it to categories based on probabilistic, rather than deterministic,
correlational patterns. While Experiments 1 and 3 both provided evidence for category
invention in the deterministic case, Experiment 2 fell short of providing definitive
evidence either for or against category invention in the case of probabilistic categories.
Therefore, the present experiment, if successful, would be the first to provide strong
evidence for the use of category invention to learn probabilistic patterns in an
unsupervised environment.

Method

Subjects, Materials, and Procedure

The subjects were 35 students of San Jose State University participating in partial
fulfillment of their Introductory Psychology course requirement. The experimental
procedure was identical to that of Experiment 2, and consisted of 40 trials plus
instructions and debriefing. The same stimuli (list descriptions of fictitious trees) were
used as before, and these were divided into the same correlation-based categories. As in
Experiment 2, one-quarter of the instances within each category had no exceptional
values, one-half had a single exceptional value, and the remaining one-quarter had 2
exceptional values. Exceptional values occurred equally often on all 12 attributes, and
different exceptional values were used in the two categories (e.g., value #3 for Category
A and value #4 for Category B).

Design

Subjects were randomly assigned to two different conditions, analogous to those
of Experiment 3. In the Contrast condition, the first 16 of 40 instances were all members
of Category A. Following this pretraining block, the next 24 instances consisted of 12 As
and 12 Bs, presented in a mixed sequence. No more than 3 successive instances from the
same category occurred during this test block. The first instance shown of both Category
A and Category B had no exceptional values, allowing subjects to see the correct default
values of each attribute prior to encountering any exceptional values.
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Subjects in the Practice condition saw the same 24 instance test block as those in
the Contrast condition, but their pretraining block consisted of 8 instances of Category A
and 8 instances of Category B presented in Mixed sequence. No more than 3 successive
instances of the same category occurred during either the pretraining or test phase. The
same procedures for balancing the experimental design were undertaken as in previous
experiments.

Results and Discussion

The same types of data were collected in this experiment as in Experiment 2 and
are shown in Figure 6. The major result predicted by category invention was that
learning should be greater in the Contrast condition than in the Practice condition;
importantly, this should occur for both the pretrained category (Category A) and the
second category (Category B).

Insert Figure 6 about here

Recognition Memory

Analyses of recognition memory pooled across defaults and exceptions provided
strong support for the contrast prediction (Figure 6a). The pattern of recognition results
was similar to that of Experiment 3. During pretraining, because Contrast subjects
received 16 instances of only one category, whereas Practice condition subjects received
8 A’s and 8 B’s, both theories expect higher instance memory at this point in the Contrast
condition than in the Practice conditions. As expected, Contrast subjects indeed showed
higher instance memory during these trials.

However, when instances of Category A and Category B were mixed together in
the final test block, Contrast subjects continued to show better instance memory than did
Practice subjects (0.83 vs. 0.67, respectively). Importantly, this group difference held
true not only for Category A, but also for Category B (p < .05).

During the test mixed block of the Contrast condition, memory for Category A
was reliably higher (by 0.08) than memory for Category B. This difference was probably
due to subjects receiving the 16 pretraining exposures to Category A before seeing any
Category B instances.

Although subjects in both conditions studied exceptional values for longer than
default values (see below), memory for default values was higher than that of exceptions
in both conditions. Contrast subjects’ memory for defaults in the test block was 0.85,
compared to 0.69 for exceptions; for Practice subjects, memory for defaults was 0.68
compared to 0.61 for exceptions (p < .02). While this latter result suggests some default
learning in the Practice condition, the 0.16 difference in the Contrast condition was
significantly greater than the corresponding 0.07 difference in the Practice condition (p <
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.05) -- aresult mainly due to Contrast subjects’ high memory for defaults.

This difference in Category B learning was the primary contrast effect for which
we were searching. An autocorrelation process cannot accommodate such a contrast
effect, since reducing the instances from Category B and substituting potentially
_ interfering instances of Category A significantly improved later learning of Category B.
However, the outcome is explained by the category invention hypothesis: learning strong
default norms about one category results in heightened contrast upon being exposed to
the first instances of a second category.

Study-time Data

The study-time results (see Figure 6b) were generally weaker than the
recognition data, and revealed fewer interesting differences between conditions.
Exceptional values were studied longer than default values in both conditions; this effect
appeared during pretraining and remained significant throughout the experiment.
However, only during pretraining did study-times to exceptional values in the Contrast
condition significantly exceed those in the Practice condition.

Recall that in Experiment 2, the occurrence of an exceptional value caused
subjects to increase their study-times to that attribute of the following instances. No such
carry-over effects in study-time attained significance in the data from the present
experiment. However, memory for the reinstated default occurring on the trial following
an exception was significantly reduced (p < .05) in the pretraining block of the Contrast
condition, as happened in Experiment 2.

Implications

Taken together, the study-time and recognition memory results imply that both
categories were learned better in the Contrast than in the Practice condition. Thus, the
data provide another example of improving learning of Category B by replacing its
instances during pretraining with instances of Category A. This result violates a
prediction of a pure autocorrelation process, namely, that learning of a given correlational
pattern should increase with the number of instances encountered from that pattern, and
that exposure to an instance of a given category should improve learning of that category
by at least as much as exposure to an instance of a different category. Rather, it appears
that our subjects were learning the patterns by inventing a discrete category in response
to the mismatch or perceived contrast between instances of Category B and previously
acquired norms about Category A.

Recall that in Experiment 2, involving a similar comparison between a blocked
and mixed training sequence, no significant difference between conditions was observed
when instances of the two probabilistic categories were intermixed during the test block.
This raises the question of why the partially blocked sequence used in the present
experiment produced better learning, relative to a mixed sequence condition, than did the
fully blocked sequence used in Experment 2. A plausible explanation is suggested by
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considering that subjects in Experiment 2 saw 12 instances of Category B in succession
before returning to another instance of Category A, whereas in Experiment 4 subjects
continued to see instances of Category A interspersed among Category B trials. Subjects
in Experiment 2 may have forgotten some of their Category A learning while acquiring
Category B, due either to decay or interference. This forgetting of Category A norms
would have caused subjects to become confused when instances of Category A were later
mixed with instances of Category B in the test block, affecting their encoding and
memory performance for instances of both categories.

The results of this experiment, together with those of Experiment 2, demonstrate
that people can learn without supervision categories based on probabilistic correlations,
and that the instance-memory task can provide an index of such learning. In addition, the
results provide evidence for category invention in learning probabilistic co-occurrence
patterns similar to that provided by Experiments 1 and 3 for deterministic patterns.
However, the memory measure proved a more reliable index than did the study-time
measure for the two experiments concerned with probabilistic patterns, whereas both
measures provided equally valid indices when subjects learned categories based on
deterministic patterns.

Why would subjects’ tendency to focus on non-default values be stronger when
those non-defaults are routine variables, as in Experiments 1 and 3, than when they are
exceptions that directly violate default expectations, as in Experiments 2 and 4? If the
attentional salience of a given attribute value varied only with its improbability within a
category, default violations should have greater salience and show greater study-time
effects than routine variables. However, we would propose that the attentional salience
of a given attribute value depends not only on the improbability or unexpectedness of
that specific value, but also on the average salience or informativeness of the attribute to
which it belongs. Thus, routinely variable attributes were informative (had non-default
values) for every instance of Experiments 1 and 3, and thus subjects would have learned
to attend to these attributes consistently. By contrast, exceptional values in Experiments
2 and 4 occurred within attributes that nearly always had default values, so these
attributes usually conveyed relatively little information. Perhaps the greater
improbability of the exception values was offset by the lower a priori salience of the
attributes within which they occurred. In other words, the fact that subjects in
Experiments 1 and 3 could learn to attend consistently to specific variable attributes on
every trial resulted in a more durable preference for those attributes. On the other hand,
subjects in Experiments 2 and 4, for whom exceptional values could occur on any
attribute on any trial, could not bias their attention in advance towards attributes with
exceptional values.

Experiment 5

Experiment 5 was similar to Experiment 4 in most respects, comparing Contrast
and Practice conditions, but in order to strengthen our conclusions the training stimuli
contained fewer default violations than did those of Experiment 4. Rare exceptions
should thus appear more informative when they do occur, and should be less disruptive of
subjects’ category norms and their procedures for encoding individual instances. The
greater surprisingness of individual exceptions combined with the greater predictability
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of the instances should combine to increase subjects’ tendency to focus on exceptional
values. As a result, subjects should be more likely to retain strong category norms during
a mixed test sequence and reveal greater evidence of learning on both the recognition
memory and study-time measures.

An uncorrelated Control group was included in the present experiment to provide
a baseline to evaluate any learning observed in the other two groups. Thus, even if the
Contrast and Practice.conditions did not differ, it might still be possible to conclude that
learning had occurred in these groups by comparing them to the Control group.

Method

Subjects and Procedures

The subjects were 36 students of San Jose State University participating in partial
fulfillment of their Introductory Psychology course requirement. The same procedure
was employed as in previous experiments, and the same stimulus materials were
employed. The experiment consisted of 48 study-test trials, and subjects were allowed
90 min to finish.

Subjects were randomly assigned to three groups; two of these, the Contrast and
Practice conditions, were similar to those of Experiment 4. Within these conditions,
default attribute values were correlated probabilistically, as in Experiments 2 and 4, but
the correlational patterns of the present experiment were more reliable. Over the
experiment as a whole, one half of the training instances from each category had a single
exceptional value and the other half contained all default values. The overall probability
of default values in this experiment was thus approximately 0.96.

As before, the Contrast and Practice conditions differed in whether instances of
one or both categories were presented during 16 pretraining trials. The same mixed test
block of 16 A’s and B’s was employed in both groups. The first half of the pretraining
showed instances with no exceptional values, as did the first four trials of the test block.

A Control condition similar to those of Experiments 1 and 2 was pretrained
before receiving the same test block as the other two conditions. However, their 16
pretraining instances lacked correlated values and distinct categories. During their
pretraining, the frequency of each specific attribute value was the same as during the
corresponding trials of the Practice condition, and exceptional values occurred on the
same trials in both conditions.

Instances were presented in the same order to all subjects within a given
condition, but instances were constructed from abstract numerical codes whose
correspondence to actual stimulus attributes was randomly decided for each subject. The
same procedures for balancing the experimental design were used as before, i.e.,
presenting attributes in a different order to each subject, random order of testing

attributes, and so on.
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Results and Discussion

Experiment 5 had two primary goals: (1) to provide further evidence for the
contrast effect and discrete category invention, and (2) to demonstrate that learning of
categories based on probabilistic correlations can be indexed by study-times as well as by
recognition memory accuracies. The same types of data were collected as in previous
experiments, and are shown in Figure 7.

Insert Figure 7 about here

Recognition Memory Data

Considering first the recognition data pooled across default and exceptional
values, the pattern of results in the present experiment replicates that of Experiment 4
(Figure 7a). Memory in the Contrast condition was higher than in either of the other two
conditions throughout the experiment. During the final test block, memory averaged
94% in the Contrast condition, 76% in the Practice condition, and 73% in the Control
condition. The Contrast condition reliably exceeded the other two, which did not differ.
Thus, the memory data suggests that significant category learning occurred only in the
Contrast condition, with little evidence of category learning in the Practice condition.

To provide strong evidence for category invention, learning should be greater in
the Contrast condition than the Practice condition for both the pretrained category (A)
and the non-pretrained category (B). This group difference was indeed significant at the
.02 level for Category A and at the .05 level for Category B. The latter result was the
basic "contrast effect” we were seeking in this experiment.

The results of Experiment 5 differed somewhat from those of Experiment 4 in
that only the Contrast subjects showed higher memory for defaults compared to
exceptions. Within the test block, this difference was significant at the .02 level. On the
other hand, Practice and Control subjects remembered defaults and exceptions at the
same rate.

During the test block, accuracy of remembering exceptions averaged 80% in the
Contrast condition, 78 % in the Practice condition, and 68% in the Control condition.
The latter is not significantly below the first two groups.

Study-time Data

The study-time data provided evidence of category learning in both the Contrast
and Practice conditions (Figure 7b). During the test block, Contrast subjects studied
exceptions significantly longer than defaults. This difference was also significant in both
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the Practice condition and the Control condition over the same trials. Exceptions were
studied an average of 3.88 sec in the test block of the Contrast condition, 3.90 sec in the
Practice condition, and 2.66 sec in the Control condition (compared to average default
study-times of approximately 2 sec). Due to differences in variability, the Contrast
subjects but not the Practice subjects reliably exceeded the Controls in time spent
studying exceptions. The pattern of study-time results seem to imply that some learning
may have occurred in the Practice condition, which is puzzling since their memory data
showed very little evidence of learning. It is possible that the longer study-times for
exceptional values observed in the Practice condition is partly spurious, since one outlier
subject contributed greatly to the high study-times for exceptions observed in that

condition.

These results indicate that unsupervised learning of categories with probabilistic
defaults can be indexed by both study-times and recognition memory, similar to the
learning of deterministic categories. However, the study-time measure is apparently
more vulnerable to the confusion that may occur when defaults are violated too
frequently, as presumably occurred in Experiments 2 and 4. Reducing the number of
exceptions in the present experiment apparently increased the saliance of these values
when they did occur, in addition to reducing the disrupting effects of such violations on
subjects’ default norms for the categories. As a result, significant category learning
effects were revealed by the study-time index in this experiment.

General Discussion

These experiments had three primary objectives: (1) developing and testing the
instance memory task as a procedure for investigating unsupervised learning; (2)
providing evidence regarding category invention in unsupervised learning; and (3)
establishing the generality of the results for new verbal categories based on both
deterministic and probabilistic covariance patterns.

These objectives were largely achieved by the experiments described above.
Experiments 1 and 3 demonstrated unsupervised learning of category norms based on
perfectly correlated features, and this learning was clearly indexed by both study-times
and recognition memory data. These experiments also suggested that subjects learned
the correlational patterns by hypothesizing discrete categories. The experiments
confirmed and extended earlier results implicating category invention based on
deterministic correlational patterns (Clapper & Bower, 1994). Evidence for category
invention has thus been obtained with two different stimulus types (verbal stimuli in the
current experiments, pictorial stimuli in Clapper & Bower, 1994), and with two very
different tasks (free listing of stimulus attributes vs. encoding times and recognition
accuracies from the instance memory task). Taken together, these experiments provide
converging evidence for the generality of category invention as an important component
of unsupervised learning in humans.
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Experiments 2, 4, and 5 provided demonstrations of unsupervised learning of
categories based on less than perfect (probabilistic) feature covariances. The results
suggested that subjects captured such probabilistic structures by inventing categories
much as they did in the deterministic case. The evidence for category invention derived
mainly from significant "contrast effects” in recognition memory, as reported in
Experiments 4 and 3.

These results do not eliminate the possibility that subjects in these experiments
also learned some inter-feature correlations. For example, the small learning effects
observed in the Mixed or Practice conditions of our experiments may reflect the gradual
strengthening of interfeature associations (see Clapper & Bower, 1994). However, it is
clear that autoassociation alone cannot account for the strong contrast effects observed in
these experiments. Thus, although the present results provide strong demonstrations of
category invention, we do not claim that autoassociative learning never occurs in this
setting.

At what level of unreliability would a correlational pattern become essentially
unlearnable by human subjects in an unsupervised environment? Consider, for example,
the probabilistic categories employed in many supervised category learning experiments,
in which diagnostic features might predict a particular category with, say, probability .75
and in which, even at asymptotic levels of learning, the maximum possible accuracy of
classification is barely above chance (see, e.g., Estes, Campbell, Hatsopoulus, & Hurwitz,
1989; Homa, 1984; Medin & Schaffer, 1978). It seem likely that such categories would
be practically unlearnable by subjects in unsupervised tasks. So how could children learn
real-world fuzzy categories without explicit instruction?

One possibility is that the actual fuzzy categories that children are able to learn
easily without supervision tend to be distinguished from related categories by highly
salient features that are present with high reliability and are only rarely violated (e.g.,
animals that fly are usually birds). At least, salient features seem to characterize many
biological categories, and serve as a basis for many published identification guides (e.g.,
bird-watchers’ books) that catalogue such categories in terms of their distinguishing
features. For example, features that distinguish different species of trees or birds are
often quite reliable. On the other hand, when such reliable distinguishing features are
absent, people may be unlikely to discover such categories spontaneously without some
form of supervised tutoring.

Alternative Clustering Proposals

As noted in the Introduction, a number of techniques for conducting conceptual
clustering have been proposed in the areas of numerical taxonomy, psychological scaling,
and artificial intelligence (Everitt, 1980); therefore, we will briefly review several
proposals to see whether they might apply to our experiments and explain our results.

Most of the clustering proposals have not been formulated as incremental
learning procedures; in fact, it is commonly assumed that all n patterns to be partitioned
are available for simultaneous inspection and grouping. Moreover, the typical goal of the
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proposals is simply to group patterns into clusters that are "optimal" according to one or
another criterion. As a result, we have encountered considerable difficulty applying these
ideas to our experimental methods, especially to our particular dependent measures of
clustering. It is therefore difficult to decide what predictions the various techniques make
regarding the "blocking vs. mixing" variable manipulated in our experiments.

A number of psychological scaling techniques for clustering n objects (patterns,
instances) begin with the complete n x n matrix of inter-object similarities. Clustering
methods are then applied either directly to the similarities or to the inter-object distances
derived from multidimensional scaling of the similarity matrix (Carroll, 1976; Shepard,
1962; Torgerson, 1952). The scaling solution can be either "metric” if the similarities are
interpreted as ratio or interval measurements, or "nonmetric" if the solution is derived
from only the rank ordering of the similarities.

In some methods, clustering proceeds by designating in advance the desired
number of clusters (categories). The clusters are then composed by putting together those
objects that are highly similar to one another. One criterion driving the process is to
search for "good clusters” that maximize the average similarity among instances within a
cluster. A secondary criterion would be to also maximize the average distance
(dissimilarity) between clusters.

Other methods do not begin with presuppositions about the number of categories;
rather, they proceed to form whatever clusters the data suggest within the constraints of
optimizing average within-category similarity. Of course, using this criterion alone, the
optimal partitioning is the degenerate one formed by assigning each object to its own
unique cluster. Consequently, further criteria regarding minimizing the number of
clusters and between-cluster similarity are typically added to lead to more interesting
partitions.

A variety of hierarchical clustering techniques have also been proposed which
aggregate objects that are most similar (e.g., Johnson, 1967; Sattah & Tversky, 1977;
Shepard, 1980). The schemes follow an agglomerative, "bottom up” procedure of
aggregating close objects together into groups, then aggregating additional objects into
existing groups, then aggregating groups together repeatedly into successively larger
groups. The methods thus construct a hierarchy (or "dendogram") in which interobject
distance is reflected in the number of tree-links connecting the two objects.

Regrettably, these clustering methods appear rather inapplicable as descriptions
of incremental learners. In our incremental task, subjects must rely on their
impoverished memory, and they have nothing remotely resembling the full n x n
similarity matrix to use to calculate optimal clusters. Without perfect instance memory
(for our 12-attribute stimuli), it is doubtful whether our subjects would be able to derive
or retain the matrix of similarities that these methods require. But even if some means
could be provided to enable subjects to have available the matrix of interobject distances,
the approach implies that the clustering solution is (or should be) independent of the
order in which the objects are inspected during training. It is just this implication that
our results seriously dispute.
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Moreover, there is no obvious way to relate a subject’s internal dendogram to our
behavioral measures, such as feature study-time, feature recall, and attribute listing.
Certainly, if branches of dendograms were divided by alternative values of default
features, with instances differentiated at successively lower levels of the net, and if the
dendogram in memory were to be entered from the top node and searched downwards (as
most net models do), the model would predict most inspection of default features and
least inspection of variable features. But this is just the reverse of the inspection behavior
observed.

It may be unfair to view such scaling procedures as presumed descriptions of
actual processes by which subjects encode and remember the patterns. In fact, scaling
theorists usually confine their statements to the claim that the scaling solution is just one
representation of similarity data, not itself a behavioral process theory.

Clustering Algorithms from Artificial Intelligence

Several clustering algorithms have also been proposed in the literature of
artificial intelligence. Their goal is typically to find the best way to group together
collections of examples to optimize some function. For example, Hanson and Bauer’s
(1989) WITT program computes correlations between all possible feature pairs in the
collection of instances. Using these, WITT then follows an algorithm that seeks to
maximize the average pairwise featural correlations of objects within categories while
minimizing the average featural correlations between all contrasting categories. For the
stimuli used in our usual experiment (12 four-valued attributes), WITT would have to
keep track of 66 contingency tables with 4 to 16 entries per table -- all of which would
seem a bit much for our subjects who show immediate recognition-memory for only
about half of the attributes of a just-studied pattern (prior to learning category defaults).
Furthermore, contingency tables are insensitive to the order in which the entries come in,
so the model would expect little influence of the blocking vs. mixed order of instances
studied in our experiments.

Another class of Al clustering models build hierarchical trees incrementally,
similar to the discrimination nets of the Elementary Perceiver and Memorizer (EPAM)
theory (Feigenbaum, 1963; Richman, 1991; Richman & Simon, 1989). Examples
include Kolodner’s (1983) CYRUS, Lebowitz’s (1982) UNIMEM, and Fisher and
Langley’s (1990) COBWEB. These models typically assume that the person stores and
retains a complete record of each instance. Instances are used to grow a discrimination
net by adding branches in the tree corresponding to "important" differences between the
current instance and the stored replica of an earlier instance sorted down to that same
node along branches of the tree. The models differ slightly in what events trigger growth
of new branches in the discrimination net. For example, COBWEB divides a node into
two branches (two subcategories) by using a "category utility"” heuristic (Gluck & Corter,
1985). Category utility refers to how much one can improve (above baseline) the
predictability of features of an instance by being told its category. COBWEB subdivides
a given branch (cluster) if by so doing it significantly increases the average category
utility over the entire set of current categories.
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While these net-growing systems are indeed sensitive to the order in which the
examples are shown, they apparently predict (P. Langley, personal communication,
August, 1994) that best learning in our experiments would occur for the mixed rather
than the blocked series of category exemplars. The nets grown by the models would
clearly reflect more accurately the logical structure of the instances and be organized
more simply after encountering a mixed sequence of instances rather than a blocked
sequence, and this net complexity would be reflected in the model’s performance. Since
these models store all features of all examples (e.g., enabling calculation of category
utility to guide the search), it also is not clear how the models would be modified to deal
with impoverished memory or to apply to our tasks of attribute listing, measured
inspection times, and instance recognition memory.

In summary, our brief survey of this clustering literature has turned up relatively
little of direct applicability to our task. In fairness to those models, however, we must
emphasize that their goals were typically very different from ours. For example, many
Al models are primarily concerned with how to characterize optimal clusters in non-
obvious domains, and how to compose algorithms that will converge upon nearly optimal
clusters given large collections of noisy instances. In contrast, the categories we studied
are exceedingly simple and regular -- defined by simple conjunction -- and all the Al
theories would discover them almost immediately, indeed in trivial time. Our goal rather
has been to study the way subjects process early instances without external memory aids
to help them keep track of prior instances. Clearly, our memory-limited subjects find the
incremental learning task difficult despite the logical simplicity of the underlying
categories.

Exemplar Storage Models

A class of popular models for category learning tasks are those that assume that
complete exemplars are stored, and that a new instance is classified depending on its
similarity to the various categories of stored exemplars (Estes, 1994; Medin & Schaffer,
1978; Nosofsky, 1988). It is not clear that the exemplar storage model has the
mechanisms required to deal with the performance measures we collect in our
unsupervised learning tasks. Our subjects are asked to memorize instances, not classify
them. The basic exemplar model has no mechanism by which it can use past knowledge
to direct attention preferentially to variable rather than the default attributes of instances.
Moreover, the rules that have been proposed (e.g., Nosofsky, 1984; 1986) assign greater
salience and attention to the category-defining (default) attributes rather than the variable
attributes. To deal with our selective encoding data, the exemplar model would require
the addition of some rules essentially equivalent to the "schema plus corrections”
strategy. For example, given a value of 1 on attribute 1 in Table 1a, the rule would
automatically fill in 1’s for default attributes 2-5 and then devote study-time to encoding
the presented values of variable attributes 6-8. But such a rule essentially concedes the
argument to schema theories. Using one default to fill in others is the defining feature of
"property inheritance" that is central to schema theories. Therefore, such a rule would
violate the cardinal assumption of exemplar models, viz., that entire exemplars are to be
stored, not filled in with default values.
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Andersons’s Rational Model

An alternative that holds promise of accounting for our data is the rational theory
of categorization proposed by J. R. Anderson (1991). This model is a contender because
it uses a discrete category invention process to deal with successive instances that are
greatly mismatched. The model operates equally well with supervised and unsupervised
learning environments.

The rational theory sets up a category for the first instance it sees, and then
decides for any later instancstzl whether to include it}iln an ((:ixisting cate%org Qrtosetupa
new category for it. Using 5 PTiOT assumptions, the model att€mpts To éstimate the
Bayesian probabilities of the current instance given either of these two states of affairs
(previous or new category), and it selects that decision that maximizes the probability of
the present instance. Calculation of the Baysian probabilities requires prior assumptions
regarding the number of yet-to-be-seen values of features, the weighting of new data
against prior assumptions regarding feature probabilities, and a "coupling parameter”, c,
which is the prior probability that any two objects of the domain will belong to the same
category.

In general, the rational model is sensitive to the sequence in which instances are
encountered. However, given the very marked differences between our A and B
categories (see Figure 1a), the rational model predicts that the two categories will be
learned very rapidly with either the mixed or the blocked presentation sequence. For
most values of the ¢ parameter (Anderson uses .30 for most of his simulations), the
rational model would predict either no difference in category learning due to blocking, or
a slight advantage due to mixing instances of the two categories early in training (J. R.
Anderson, personal communication, August 1994). The model may possibly produce a
slight advantage for the blocked over the mixed presentation condition, but only by
assuming implausible values of the parameters (J. R. Anderson, personal communication,
August 1994).

The rational model, like many of the other models discussed previously, assumes
perfect memory for the instances encountered on each trial. However, this unrealistic
assumption may be weakened simply by assuming that some of the feature-to-category
probability adjustments that occur on each trial are lost or forgotten by the following
trial. Such forgetting would tend to reduce the perceived difference between instances of
the A and B categories early in a mixed sequence, and increase the chance of lumping
them together into a single category. We suspect that, with this modification, the rational
model could simulate our results under a somewhat wider range of parameter values.

To relate the rational model to our performance measures, we might assume that
once an instance is categorized using one default attribute, the model-subject uses the
conditional norms of that category to "fill in" the rest of the default values, and then
spends most of the remaining time encoding the variable features of the instance. In that
manner, the model would mimic a "schema plus corrections” encoding strategy. Because
the rational model has the potential for explaining our results, we consider it to be a
plausible description of the discrete category-invention process. An advantage of linking
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our results with the rational model is that it has a proven track-record for explaining the
standard results in the categorization literature (see J. R. Anderson, 1991).

Implications for Memory Performance

Beyond providing evidence of how categories are induced in unsupervised
learning tasks, the present experiments also relate to the issue of how schematic
knowledge about categories affects people’s episodic memory for instances. As noted in
the Introduction, research areas that bear on this topic include people’s memory for text
passages based on stereotyped routines or scripts (e.g., Graesser, Woll, Kowalski, &
Smith, 1980; Bower, Black & Turner, 1979; Schank & Abelson, 1977), memory for
descriptions of people based on personality stereotypes (e.g., Srull & Wyer, 1989), and
differences in memory between domain experts and novices (Chase & Simon, 1973;
DeGroot, 1965, 1966). Most of this research assumes an encoding strategy based on a
"schema plus corrections” strategy (see, e.g., Clapper & Bower, 1991; Graesser et al.,
1980; Schank and Abelson, 1977); that is, instances are encoded by referring or
"pointing" to the appropriate schema (set of category norms) in long-term memory, and
then selectively encoding any features of the instance that could not be predicted from
this schema. We assumed that subjects would employ such an encoding strategy in the
present experiments, and we used their tendency to do so as an index of how well
categories were learned.

The schema-plus-corrections encoding strategy makes several predictions about
memory performance; we will mention three. First, memory should be better when a
schema is available than if one is not (a common difference between experts and novices,
for example). Because the schema specifies many feature-values of the instance in
advance, it reduces the amount of new information that must be encoded to remember the
instance accurately. Second, the theory predicts that, in the case of stereotypic text
passages, subjects will show better discrimination in recognition memory for atypical or
unexpected values of default features because they pay more attention to non-defaults
while encoding the passages (see Heit, 1993).

A third implication of the schema-plus-corrections encoding process is that as
successive instances of a category are presented, their consistent features will become
more predictable and so receive progressively less attention, freeing the subject to devote
more time to learning the unpredictable features of later instances. The present
experiments allowed us to observe the time-course of this learning over trials. Our
method also allows us to provide a more detailed description of the factors that determine
attentional allocation, thus refining the analysis of simple dichotomies such as that
between "typical" and "atypical" features. For example, we suggest that attention may be
controlled not only by the improbability or unexpectedness of a particular value of an
attribute, but also by the average informativeness or utility of that attribute as determined
over previous trials. Thus, even though routine values of variable attributes may occur
more frequently and so appear less informative or surprising than exceptional values, the
fact that a variable attribute has proven consistently informative over previous trials will
cause it to be attended to more often in the future. In other words, rather than attention
and encoding being controlled by a single factor within a category (expectedness or
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typicality); a two-factor model stressing the informativeness of a given value and the
informativeness of the overall attribute is more appropriate.

A final point relevant to the schema-plus-correction theory concerns the low
recognition memory discrimination usually found with default features (e.g., Graesser et
al., 1980; Bower et al., 1979; Heit, 1993). We note that such results are often obtained in
experiments which describe events in narratives. By convention, narrative descriptions
are highly abbreviated and failure to mention an expected feature does not imply its
absence from the situation. However, in cases in which the absence of a default would be
noticed by subjects as an explicit violation of their expectations, we would expect high
overall memory discrimination for defaults even if subjects generally gave little attention
to them when they were present. This outcome held true for the present experiments in
which exceptional values were substituted for defaults and were explicitly noticed by
subjects as exceptional.

In earlier work, we showed that subjects will notice the absence of additive
features of a stimulus when these are strongly expected; they will then count this absence
as a salient characteristic of the stimulus. For example, Clapper and Bower (1991)
showed that when subjects strongly expected instances within a category to have some
feature (such as wings on a fly), the absence of that feature was readily noticed (e.g., a fly
without wings) and this missing value was more salient than when the default value was
present. In such cases, we would not expect subjects to suffer the same low memory
discrimination for defaults that is often observed in experiments using text materials.

Final Comment

The study-time task investigated here provides results that converge upon the
same conclusions about category invention that we arrived at with our earlier
investigations using the attribute listing task. Importantly, the study-time task allows
investigation of several learning phenomena in greater detail than has been possible by
using only naturally occurring knowledge structures such as routine scripts in texts, or
person stereotypic descriptions. Our method enables researchers to vary the training
history and structure of a given category (schema) as well as its relation to other
categories. The method also allows investigators to observe and track trial-by-trial the
effects of a schema on selective attention, encoding, and memory performance. In this
manner, the task allows tests of theories of how categories are discovered and learned in
the first place, especially in unsupervised learning tasks. Such virtues should provide
helpful tools for further research into major properties of cognitive learning.
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Figure Captions

Figure 1. Sample stimulus sets illustrating how categories may be defined in terms of
correlated attribute values. There are 8 attributes (columns) with binary values (1 or 2).
Each row represents an instance. In panels a and c, the 8 instances in the left block
reflect one category (called "A") and those in the right block reflect a second category
("B").

Figure 2. Computer display as it appeared during the three phases of Experiments 1 and
2. Panela illustrates an instance display with all features masked except for the bark-
color attribute. Panel 6 illustrates the 4-alternative recognition memory test. Panel ¢
illustrates feedback of the correct answer following a subject’s choice on the memory
test.

Figure 3. Recognition-memory accuracy and study-time data from Experiment 1. Trials
are shown in their original order in this figure; the functions are disconnected to indicate
where the A- and B-blocks are separated in the Blocked condition, and where the test
block begins in all three conditions. Study-time in seconds is abbreviated as "ST" on the
vertical axis of this and the following figures.

Figure 4. Recognition-memory accuracy and study-time data from Experiment 2. Trials
are shown in their original order, and the functions are separated as in Figure 3.

Figure 5. Recognition-memory accuracy and study-time data from Experiment 3.
Pretraining trials are shown in their original order and separated from the test trials which
follow. The test trials are separated by category in both conditions (the A-trials are
shown before the B-trials, although the trials were mixed.

Figure 6. Recognition-memory accuracy and study-time data from Experiment 4. Trials
are shown in their original order, and the pretraining trials are separated from the test
trials.

Figure 7. Recognition-memory accuracy and study-time from Experiment 5. Trials are
shown in their original order, with pretraining and test blocks separated.
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Abstract

Three experiments investigated the principles by which categories are discovered
and prior category knowledge is used to facilitate learning categories without feedback
(unsupervised learning). These experiments provided evidence that categories are
discovered primarily through their contrast with previous categories, and that subjects
create new categories as needed based on contrasts rather than by accumulating evidence
about patterns of correlated features over successive training instances. When a new
category shared default features with a previous category, subjects appeared to learn new
norms mainly for the features on which the two categories differed, transferring norms
for shared features to the new category rather than relearning them. The data also suggest
that the context in which a category is learned and the type of stimulus materials used
(verbal or pictorial) can influence the later stability or retention of separate categories.
The results are discussed in terms of the constraints they place upon acceptable models of

human category learning.
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Introduction

The ability to group objects and events into discrete categories, and to learn
generalized descriptions of these categories, is one of the fundamental components of
human intelligence. Two general experimental situations have been used to study
category learning. In supervised learning tasks, subjects are asked to sort a series of
training instances into predefined categories, and are given regular feedback on the
accuracy of their classifications. Such feedback is absent from unsupervised learning
tasks, in which subjects must invent their own categories based on any informative
regularities or patterns they detect within the stimulus set.

While an extensive body of research has accumulated on supervised learning
(see, e.g., Bruner, Goodnow, & Austin, 1956; Homa, 1984), unsupervised learning has
received much less attention within experimental psychology. Few established
procedures or reliable measures have been developed for investigating unsupervised
learning. In this article, we employ procedures developed by Clapper and Bower (1991,
1994b) to investigate the processes by which people discover and learn about categories
in unsupervised tasks. These procedures provide reliable indices of subjects’
unsupervised category learning as they examine a series of training instances to perform
tasks which, on the surface, appear unrelated to categorization.

Defining unsupervised learning

To evaluate unsupervised category learning in experimental tasks, it is first
necessary to define what kinds of patterns or structures within a stimulus set are
considered to give rise to distinct categories. We will be concerned here with categories
defined in terms of correlated stimulus features, i.e., properties that consistently occur
together over time and separate presentation episodes. To make this notion more precise,
let us begin by characterizing stimulus sets in terms of abstract dimensions or attributes,
each of which can assume one or another of a range of concrete values. Specific attribute
values of a training instance will also be referred to as features of that instance. To
illustrate, artificial stimulus sets for laboratory experiments are often generated from a
few general attributes such as shape (with values triangle or square), size (large or small),
and color (red or green), so that individual stimuli within the sets are distinguished by
specific values on each attribute, e.g., a large red triangle vs. a small green square.
Although natural stimuli are generally more complex than such artificial stimulus sets, in
theory natural stimulus sets could also be characterized in terms of fixed sets of
attributes.

When a domain is characterized by given attributes, categorical structure may be
defined in terms of correlations or patterns of co-occurrences among the values of
different attributes. For example, the stimulus set illustrated in Figure 1a displays
perfectly correlated values on the first 5 of the 8 attributes listed, but not the last 3a (the
order of listing is arbitrary). These correlational patterns define two distinct categories
within the stimulus set, each category corresponding to a particular cluster of co-
occurring attribute values. By contrast, in Figure 1b all the attributes of the stimuli vary
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independently, providing no basis for partitioning the stimulus set into meaningful
categories. Within a correlated stimulus set, the consistently co-occurring values that
give rise to a given category (e.g., the first 5 in Fig. 1a) will be referred to as the default
attribute values of that category. Uncorrelated attributes (e.g., the last 3 in Fig. 1a) will
be referred to as variable attributes, and specific values of these attributes will be called
variable values or simply variables.

Within unsupervised tasks, category learning can be defined in terms of subjects’
sensitivity to the correlational structure of a stimulus set, i.e., responding discriminately
to the underlying patterns that give rise to categorical distinctions. Such learning is
demonstrated by showing that the correlational patterns influence subjects’ performance
on some task -- for example, by showing that memory is improved when a stimulus set
contains correlational patterns, or that memory for correlated values exceeds that for
uncorrelated values.

Measures of unsupervised learning

Clapper and Bower (1991, 1994a, 1994b) developed several indirect indices of
unsupervised learning of such correlation-based categories. The primary effect of
learning such correlational patterns is an increased ability to predict the features of an
instance given partial information about that instance, such as its category membership.
Given that subjects can remember the category to which an instance belonged, they can
reconstruct the values of all its correlated attributes on the basis of general norms
acquired from previous instances. Thus, subjects show improved memory for default
values within a correlated set, compared to the features of otherwise equivalent instances
from uncorrelated sets (Clapper and Bower, 1991, 1994b).

By definition, default values are predictable within a given category, and since
defaults are shared by all or most instances within that category, they provide no basis for
distinguishing among different instances. Different instances within a category are
distinguished in terms of their variable, non-default, features. For example, in Fig. 1a,
the patterns in the first and last rows are distinguished from one another only by their
values on the last three (variable) attributes. Therefore, when memorizing a given
instance subjects need only remember what category it belongs to, plus the variable
values which are not predictable from this category membership. The subjects would not
need to encode default values as features of the specific instance, because these values
could be inferred from general norms previously acquired about its category. Much
evidence has shown that, as people learn stimulus materials based on familiar natural
categories, they tend to encode these materials by remembering the category (script or
schema) which they instantiate, plus information that could not be inferred from this
categorization. (see, e.g., Bower, Black & Turner, 1979; Clapper & Bower, 1991, 1994a;
Graesser, Woll, Kowalski & Smith, 1980; Schank, 1982; Schank & Abelson, 1977). This
is referred to as the "schema-plus-corrections” (S+C) encoding model.

In previous research, Clapper and Bower (1994b) showed that subjects who
learned correlational categories conformed to the S+C encoding strategy, and that use of
this strategy could even be taken as an index of category learning. Thus, subjects asked
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to memorize a series of training instances with correlated attribute values spent
significantly more time studying unpredictable variables than predictable defaults of the
instances. This tendency increased with the degree of category learning, and provided a
reliable basis for comparing learning in different training conditions. Due to this
increased attention to variable features while studying the instances, category learning
resulted in improved memory not only for predictable defaults, but also for the values of
the unpredictable attributes (compared to a control condition in which the stimuli were
composed of uncorrelated attributes).

A related index of learning, employed by Clapper and Bower (1991, 1994a),
asked subjects to write down a list of those attribute values of each training instance that
distinguished it from similar instances they had seen, while omitting features that would
not provide such discriminating information. They were asked to record only those
features that would enable them to recognize this instance in a later multiple-choice test.
Since variables distinguish different instances within a category whereas defaults do not,
as subjects learned the correlated defaults within the presented stimulus sets, they
increased their listings of variables while decreasing that of defaults. The difference in
frequency of listing defaults versus variables provided an index of category learning
similar to that provided by differences in study times in the instance memorization task.

Methods of unsupervised learning

Given a definition of categories within an unsupervised task, as well as
procedures for measuring subjects’ learning of them, we have tried to discriminate among
different processes by which such learning might occur. Clapper and Bower (1994a,
1994b) distinguished two general processes by which correlational patterns could be
acquired in the absence of predefined categories or categorization-related feedback. !
These differ primarily in whether categories are viewed as arising through the
accumulation of correlational data over a series of instances, or as arising through the
discrete hypothesizing of distinct categories triggered by detecting explicit mismatchs
and contrasts between instances from different categories.

Clapper and Bower (1994a, 1994b) referred to the first general approach as
autocorrelation, because in such models a person’s knowledge of correlational structure
is represented directly, in the form of a matrix of correlational associations or as a
collection of correlational rules. As each new training instance is encountered, the
associations (or correlational rules) relating the attribute values of that instance to one
another are strengthened. As additional instances are presented from a given category,
associations between consistently correlated values increase in strength, while
associations between values that do not occur consistently together will be weaker. With
training, a learner would acquire the ability to predict the presence of default values
given other default values, and to distinguish correlated defaults from uncorrelated
variables. For example, in the categories of Figure 1a, a value of 1 or 2 in any of the first
five relevant attributes perfectly predicts a corresponding value of 1 or 2 in the remaining
five attributes. In the autocorrelation approach, categories need not be represented
explicitly because all category information would be captured within the network of
explicit correlational associations. Several models of this type are represented in the
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literature, e.g., single-layer connectionist models such as those of J. A. Anderson and
others (see, e.g., Anderson, 1977; Anderson, Silverstein, Ritz & Jones, 1977; Rumelhart,
Hinton, & McClelland, 1986) or rule-learning models such as that of Billman and Heit
(1988) and Davis (1985).

A second hypothesis regarding people’s learning of correlational structure
assumes that people can invent (hypothesize) new categories as needed to capture
whatever patterns or regularities they notice in a given stimulus set. We refer to this
method as category invention (Clapper and Bower, 1994a, 1994b). In the absence of any
direct autocorrelation, a learner must use some other basis for deciding when to create
new categories. One alternative to autocorrelation is to invent new categories whenever
existing categories fail to accommodate a novel or surprising training instance. To
illustrate, imagine that subjects are shown the eight instances of category A from Figure
1a, followed by two instances of category B. We assume that a new category is created
at the start of training to describe the first instance of A, and that further A instances are
then assimilated to this category. When the first instance of category B is presented, it
will violate the default values of the first 5 attributes that had been previously acquired
for category A. We assume that if the learner’s subjective impression of surprise or
mismatch exceeds some internal criterion (e.g., a majority of defaults are violated), then
learners will create a separate category to cover this B stimulus, and proceed to assimilate
further B instances to this new category and further A instances to the original A
category. By assigning instances that exemplify different correlational patterns to
separate categories, and computing general norms (central tendencies such as averages or
probability distributions of values) within each category, a learner could internalize much
of the same information as contained in a direct correlational record but without needing
to keep track of associations among all possible feature combinations. This mismatch or
contrast heuristic for creating new categories is similar to the "failure driven learning" of
Schank (1982), and to the "novelty detectors” used to reclassify instances in some multi-
layered connectionist models (e.g., Carpenter & Grossberg, 1987).

In category invention, a new category is created because some of the features of a
novel instance contradict strong default expectations of the most similar existing category
(called the reference category). Importantly, the contrast between the first new (B)
instance and the previous (A) category depends on the strength or confidence of the
default norms subjects have acquired about category A. If subjects have seen only a few
instances of category A and so have relatively low confidence regarding the default
norms for this category, then the first instance of category B will not result in the fallure
of strong expectations, and hence it may not trigger the creation of a new category. i
not, then instances of both A and B categories will be included in the original category;
thus subjects would fail to properly conditionalize the correlational structure of the
stimulus set (i.e., all the attributes would be encoded as independent variables). The
stronger and more definite the default expectations learned about category A prior to the
presentation of category B, the greater the subjective impression of contrast or mismatch
between the two patterns, and the greater the probability that a separate category will be
created to describe the B instances.
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According to category invention, discovering and distinguishing categories based
on different correlational patterns is an inherently comparative, sequential process. Each
category is learned by contrast with categories that have been acquired previously. When
presentations of two different categories are intermixed from the start of training and
must be learned concurrently, subjects may perceive no strong contrast between them and
thus the instances may be lumped together into a single category, obscuring the
correlational structure within each category. Thus, two-category learning will be reduced
by any manipulation which changes a sequential learning problem, in which category B
can be learned by its contrast to strong defaults of a prior-learned A category, to a
concurrent problem, in which A and B instances are intermixed from the start of training
so that both sets of defaults must be learned concurrently. This outcome should hold true
even when the manipulation results in a larger number of instances from a given category
being shown in the concurrent condition than in the sequential condition. To illustrate, a
condition in which ten instances of category A are presented prior to a mixed sequence of
As and Bs may be compared to another condition in which a random 5 of the first 10
instances of category A are replaced by instances of category B. Even though the number
of B instances is larger in the second condition, the structure of the learning series has
changed from sequential to concurrent presentations of the two categories; this change
should decrease the probability of creating separate categories and thus reduce average
learning of category B.

Autocorrelation models are relatively unaffected by subjective contrast and rely
exclusively upon experiences of feature co-occurrences (accumulation of correlational
strengths over successive instances of a category) to acquire correlational patterns. A
learning process that depends exclusively upon autocorrelation expects that, all else being
equal, learning of a given correlational pattern should increase monotonically with
exposure to instances of that pattern. Therefore, autocorrelation expects learning of
category B to be higher in the concurrent condition described above than in the sequential
condition; according to an autocorrelation approach, the only important difference
between conditions is the different numbers of instances shown from each category.

Clapper and Bower (1994a, 1994b) reported several experiments in which
reducing the number of instances presented from a given category increased learning of
that category, apparently due to heightened contrast of the second category with a well-
learned, earlier category. This pattern of results, in which perceived contrast had a larger
impact on learning than the number of instances shown from a given category, was
referred to as a contrast effect, and was interpreted as evidence for category invention
rather than autocorrelation in unsupervised learning.

The Clapper & Bower experiments provided evidence for explicit category
invention in several situations. Contrast effects were obtained in both attribute-listing
and instance memorization tasks, with both pictorial stimuli and verbal stimuli, and for
categories characterized by correlational patterns in which defaults were present with
100% reliability as well as those in which the correlations were less than perfect (Clapper
& Bower, 1994a, 1994b). That evidence was limited, however, because the situations
investigated involved only two categories that were always distinguished by contrasting
values on the same attributes. Possibly, 2-category leamning is a special case in which
contrast plays an unusually large role, and perhaps when more categories are being
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learned autocorrelation would play a larger role relative to between-category contrasts.
These possibilities are tested in the experiments described below, all of which use more
than 2 categories and in which some of the categories contrast on all attributes while
others within the same set have partially overlapping defaults. If significant contrast
effects were observed in such situations, we would have convincing evidence of the
generality of contrast effects and category invention in unsupervised learning.

Transfer of learning in category invention

Category invention implies that new norms must be hypothesized and stored in
memory to represent a new category. This description raises the question of how new
categories are represented in relation to old categories, i.e., what information is added to
the learner’s existing conceptual knowledge to capture the novel properties of the new
category?

In the present context, the new (triggering) stimulus is assumed to contain a
contrasting set of default attribute values within the same set of attributes as the reference
category. The minimum requirement for capturing such discrepancies is that new norms
be created for each attribute of the triggering stimulus that violates norms of the reference
category. However, the learner need not create new norms for aspects of the triggering
instance that are shared with the reference category; these shared values would constitute
the basic set of attributes by which both subcategories would be described. Such
information could be omitted from the norms of the new category so long as the learner
encoded this category explicitly as a set of modifications to the reference category. In
this case, features which the new category shares with the reference category could be
retrieved indirectly from the norms of the reference category. '

This minimal representation strategy can be viewed as a normative or rational
rule for category invention, because it maximizes efficiency in terms of encoding
resources and memory organization. A new category is acquired by making the fewest
possible modifications to the learner’s existing knowledge base required to accurately
represent how the new category differs from previously acquired ones. Granting that new
learning (memorizing new cognitive structures and their elements) requires cognitive
resources (i.e., time or encoding capacity), then category invention in humans should
approximate this normative model to some degree. The logical alternative, an exhaustive
full-copy recording of all defaults of the new category, seems implausible given the
complexity of natural stimuli and categories and the difficulty of many real-world

learning problems.

This approach to creating new categories is consistent with the standard S+C
model, described above, of how people encode specific instances of familiar categories
(see, e.g., Clapper & Bower, 1991, Graesser et al., 1980; Schank and Abelson, 1977).
When subjects encounter the first few instances of a new category, they should allocate
attentional resources to attributes in a manner predicted by the S+C model. That is, they
should attend most to those features of the new instances that contradict the norms of the
reference category, after glancing briefly at (then passing over) defaults from the
reference category that are shared by instances of the new category. Due to this lack of
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attention at encoding, such shared defaults should tend to have lower weight or salience
in the memory representations of these new instances and the category norms based on
them. Thus, the S+C encoding process tends to produce economical category invention
as a by-product of its economical strategy for encoding individual instances.

For convenience in describing such related categories, we will refer to the shared
defaults as superordinate defaults, because by virtue of being shared by more than one
category these features define an implicit superordinate category which contains the
subcategories possessing those defaults. Default values which distinguish each
subcategory within this broad superordinate category will be referred to as subordinate
defaults. To illustrate, consider the following four categories, depicted in terms of the
same abstract numerical codes used to describe the categories in Figure 1: Al =
111111XX, A2 = 111222XX, B1 = 333333XX, and B2 = 333444XX. In this example,
the first two categories (A1 and A2) share three out of six default values, as does the
second pair (B1 and B2). The stimulus set can be partitioned into two superordinate
categories (A vs. B) distinguished by two contrasting values on the first three attributes.
In turn, each superordinate category may be partitioned into two subordinate categories
(Al vs. A2, and B1 vs. B2), distinguished by four contrasting values on the second three
attributes. The instances within a subcategory are distinguished by values on the last two
variable attributes, the Xs. Thus, categories that overlap in this manner comprise a two-
level default hierarchy; such hierarchies play a central role in many theories of
knowledge representation (see, e.g., Clapper & Bower, 1991; Collins & Quillian, 1969;
Collins & Loftus, 1975; Holland, Holyoak, Nisbett & Thagard, 1986; Schank, 1982
Kolodner, 1984).

We expected that when a new subcategory was introduced following an earlier
subcategory sharing the same superordinate default values, subjects would maintain the
same level of attention and memory for these shared defaults as they had shown on the
last instance of the prior reference category; but we also expected subjects would show
sharply increased attention to, and decreased memory for, new subordinate defaults for a
few trials. Such heightened attention to subordinate attributes was expected to diminish
as additional instances of the new subcategory were encountered, due to strengthening of
the new subordinate default values to the level of the shared defaults. In these initial
studies our main concern was to provide basic demonstrations of default transfer effects,
i.e., to design laboratory situations in which category invention could be shown to
conform to the basic S+C framework. Later research may then determine the specific
factors that influence transfer performance and that could serve as a basis for
discriminating among alternative models of transfer.

Experiment 1

The goals of the present experiment were (1) to corroborate earlier evidence that
people learn categories in unsupervised tasks primarily through category invention rather
than autocorrelation, and (2) to investigate how people transfer default norms from
previously acquired categories to partially overlapping new categories.
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To provide evidence for learning by category invention, we compared learning in
two different sequencing conditions. In the Contrast condition, 3 categories were
introduced into the training sequence one at a time, so that subjects could learn the
defaults of a given category very well before seeing any instances of a new category.
Such a presentation sequence should facilitate category invention by maximizing the
subjective contrast between the first instance of each new category and the default norms
acquired about previous categories. The second (Mixed) condition presented instances of
the different categories in a randomly intermixed sequence from the start of training. In
this condition, the collections of default values characterizing the different categories
would have to be acquired concurrently. The category invention hypothesis predicts that
subjects encountering several related categories in such a mixed sequence without
supervision may lump them together into a single overgeneralized category, and thus fail
to learn the conditionalized correlational structure of the stimulus set. Thus, subjects
should show poorer learning of the categories in this Mixed condition than in the
Contrast condition, even though a larger number of instances from a given category had
been shown in the Mixed condition. Such a contrast effect cannot be accommodated
within a learning process based purely upon autocorrelation.

A second goal of the present experiment was to demonstrate the transfer of all
relevant norms from previously-learned categories to new subcategories. Of the three
categories shown, two (A1 and A2) shared the same values on several defaults
(superordinate defaults) and differed along several others (subordinate defaults). The
third category (B) differed from the two on both super- and subordinate defaults.
Category Al was presented first in the Contrast condition, followed by categories A2 and
B. Since category A2 had the same superordinate defaults as the prior category Al,
subjects were expected to show significant positive transfer in acquiring these
superordinate defaults, compared to the new subordinate defaults. No such difference
should be observed for category B, which shared neither superordinate nor subordinate
defaults with the previous A categories.

This experiment employed the instance memorization task introduced in Clapper
and Bower (1994a), which provides two distinct indices of category learning on each trial
(viz., study-time and recognition memory). If observed, the predicted pattern of results
would provide evidence for the generality of the category invention process, and indicate
that this process takes advantage of prior knowledge to economize on new learning and
attentional resources.

Method

Subjects

The subjects were 38 undergraduate students of San Jose State University
participating in partial fulfillment of their Introductory Psychology course requirement.
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Procedure

Subjects were tested in groups of 10 to 15 for a single 90 min session. Each
subject was seated in front of an individual microcomputer terminal, which administered
all aspects of the experiment. After subjects read the instructions presented on the
computer screen and signed a form indicating their informed consent to participate, the
main portion of the experiment began.

Each trial consisted of a study phase followed by a test phase. At the beginning
of the study phase, a list display was presented in the middle of the CRT screen. At the
top of the list was the name of a fictitious tree instances (these were arbitrarily selected
Latin names from a plant identification guide), below which appeared a vertical listing of
twelve verbal feature descriptors, one per row. At the start of the trial, each descriptor
was masked by a row of X’s (see Figure 2a). Starting from a random attribute (row)
showing in the list, subjects studied the feature descriptors by pressing a designated "line
up" or "line down" key which removed the X’s on the line below or above the current
line and allowed them to examine its item (attribute value). The exposed attribute value
was covered up again as soon as the inspection pointer was moved to a new line
(attribute). This procedure permitted subjects to allocate their study time among the
features any way they wished, within the constraint that the total study time equaled 36
secs. The computer recorded the total amount of time spent looking at each attribute.

Insert Figure 2 about here

Each item was a verbal description of a specific value of a particular stimulus
attribute. For example, the attribute "color of bark" had four alternative values, such as
"dark grey" and "mossy green". The attributes were presented in the same serial order
(screen locations) on each trial, although different values of a particular attribute could
occur on successive trials. That is, the color of the tree’s bark might always appear as the
fifth spatial position, its growth rate in the seventh position, and so on. In this manner,
subjects could learn the locations of the default and variable attributes.

After a study interval of 36 sec, the list disappeared and the test phase began.
During this phase, subjects were tested on their memory for the values of all twelve
attributes of the just-presented instance. The test items were presented one at a time in a
multiple-choice format (see Figure 2b). The name of the most recent instance appeared
at the top of the multiple-choice display with four alternative answers below. These
alternatives were always different values of the attribute being tested, e.g., four different
habitat preferences or growth rates. Subjects tried to remember which of these values
had occurred in the just-studied instance and typed in the number corresponding to that
choice on their computer keyboard. Following this response, the computer displayed
either a "correct” or an "incorrect” prompt under the test display, which remained on the
screen. If the response was incorrect, the correct choice was indicated by an arrow in the
display (see Figure 3c). The subject then pressed a "Next" key.
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After answering all twelve test questions about a given instance, subjects
received summary feedback for the trial. The percentage of items answered correctly on
that trial was displayed, and below this the average percentage correct pooled over all test
trials completed up to that point. If the trial score was higher than the cumulative score,
the message "Good job! You beat your overall score!" appeared on the screen; if not, the
message "Try to beat your overall score next trial” was displayed. If the subject answered
all the test questions correctly on a given trial, the message "Good job! Your score was
perfect!" was displayed.

The twelve attributes were tested in a different random order on each trial, and
the order in which values were listed in the multiple-choice test display was also
randomized separately on each trial. The experiment consisted of a total of 52 such
instance study-test trials. Following this, subjects read a debriefing sheet that informed
them of the purpose and methods of the experiment.

Materials and Design

The training instances were verbal descriptions of fictitious trees, presented in a
list format. The instances were characterized in terms of twelve substitutive attributes,
each with four possible values, defining a stimulus set of 412 possible instances. In 3 of
these attributes, only 2 values ever occurred in the training instances; in 7 other
attributes, 3 of the 4 values were shown, and all 4 values were shown in the remaining 2
attributes. All 4 values of each attribute were shown during the multiple-choice testing.

The stimuli in this experiment were divided into 3 different categories. These
categories were defined in terms of patterns of correlated attribute values, and are referred
to as categories Al, A2, and B. Representing these categories by numerical codes similar
to those displayed in Figure 1, category Al was 1111111111xx, category A2 was
1112222222xx, and category B was 3333333333xx. Particular serial positions in these
codes correspond to attributes of the stimuli, and the numbers appearing in those
positions indicate default values of the corresponding attributes. The x’s in the last 2
positions indicate variable attributes, which varied independently over 4 different values
within all three categories. Note that categories Al and A2 shared the same default
values on the first 3 of their attributes (superordinate defaults) but had different default
values on 7 other attributes (subordinate defaults). Category B had a different set of both
super- and subordinate default values than either of the A categories.

Subjects were randomly assigned to two different conditions, which differed in
the number of instances shown from each category and the order in which they occurred.
In the Contrast condition, instances of category Al were shown for the first 12 trials.
Over the next 18 trials, 12 instances of category A2 and 6 instances of category Al were
presented in random order. Following this, 12 instances of category B, 6 instances of
category A2 and 4 instances of category A1 were shown over the last 22 trials, again in
random order. Note that in this sequencing, subjects saw only instances of Al during the
first block of 12 trials, instances of both A1 and A2 in the second block of 18 trials, and
saw instances of all three categories in the final block of 22 trials. There was nothing in
the procedure to cause subjects to notice this separation between blocks, except for the
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instances of new categories not shown previously.

In the Mixed condition, all three categories were shown from the start of training.
The first block of 12 trials showed 4 instances of each category. The second block (of 18
trials) contained 12 instances of A2, 3 instances of Al, and 3 instances of B. Note that
this second block had the same number of instances of A2 as the second block of the
Contrast condition, but in the Contrast condition the 6 remaining trials all showed
instances of Al instead of showing both Al and B instances. The third block in the
Mixed condition was the same as the corresponding block of the Contrast condition,
showing 4 instances of Al, 6 of A2, and 12 instances of B. This will be referred to as the
test block in both conditions, and the two preceding blocks will be referred to as training
blocks. The order of instances within each block was randomized.

The instances within each trial block were constructed so that each value of the
variable attributes occurred an approximately equal number of times, and so that specific
combinations of variable values did not recur within the same block. Over the
experiment as a whole, each of the 16 possible combinations of values from the two
variable attributes was used an approximately equal number of times. These steps were
taken to ensure that subjects did not encounter consistent correlations between variable
values that might cause them to form spurious subcategories or correlational rules.

Balancing

The stimuli for all the subjects in a given condition were generated by the testing
program from the same input file, which contained coded specifications for generating
the instances presented on each trial. Within a given block, the stimuli were presented in
a different random order for each subject. The correspondence between serial positions
in the codes and the order in which an attribute was listed in the training instances was
randomized for each subject. These random assignments were undertaken to balance out
any idiosyncratic effects due to particular attributes, values, or combinations of values on
the experimental data.

Results and Discussion

The data collected in this experiment were the time subjects spent studying each
attribute value of an instance (study times or STs), and their accuracy in remembering
each attribute value during the multiple-choice testing phase of each trial. The study
time data and recognition memory data are displayed in Figure 3. Due to the random
sampling procedure used, data was collected from a total of 21 subjects in the Contrast
condition and 17 subjects in the Mixed condition. Data analysis in this and later
experiments involved large numbers of cooperative t-tests of significance. Rather than
tediously reporting all of these many pairwise comparisons, we will adopt throughout a p
< .05 criterion for statistical significance and simply state which comparisons are
significant by that criterion. Readers interested in actual t’s and dfs may consult the
authors.
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Insert Figure 3 about here

In the Contrast condition, subjects learned the categories sequentially, acquiring
strong norms for each category before instances of new categories were introduced into
the training sequence. As in previous research on sequential category learning (e.g.,
Clapper & Bower, 1994b), each category was learned rapidly as it was encountered.
Recognition memory (averaged over attributes) for Contrast subjects increased
significantly from 0.60 on the first trial to an overall average of 0.89. A second index of
learning was computed by averaging STs over super- vs. subordinate default attributes
and then subtracting this average from the ST for variable attributes. This difference
index was highly significant averaged over trials in the Contrast condition.

By comparison, little evidence for category learning was obtained in the Mixed
condition. Averaged over trials and categories, the ST difference index yielded no
significant evidence of learning (p > .25). In addition, recognition memory showed less
improvement over trials than in the Contrast condition. Memory averaged 0.71 over
trials, significantly less than the average of 0.89 from the Contrast condition.

Contrast effects and category invention

Fewer instances of categories A2 and B were presented in the Contrast condition
than in the Mixed condition, but the order of instances in the Contrast condition was
arranged so that the categories could be learned sequentially, whereas the default norms
of all three categories had to be acquired concurrently in the Mixed condition. If subjects
relied mainly on contrast and explicit category invention to distinguish the categories,
then the Mixed condition should show poorer learning than the Contrast condition.

The data confirmed the expected contrast effects, providing strong evidence that
learning by category invention is not restricted to the 2-category situations investigated
by Clapper and Bower, (1994a, 1994b). Category A2 occurred 12 times during the
second block in both Contrast and Mixed conditions; however, 4 instances of this
category were presented during the first block of the Mixed condition, whereas none
occurred prior to the second block in the Contrast condition. Although more instances of
A2 were seen by subjects in the Mixed condition, instance memory was higher in the
Contrast condition (0.91 vs. 0.79). Subjects in the Contrast condition also spent
significantly more of their study period attending to variable attributes of the instances of
subcategory A2 than did subjects in the Mixed condition.

Following this second block, an additional 6 instances of category A2 were
shown during the third block in both conditions. Mixed condition subjects increased
their attention to variable attributes of A2 during this third block; perhaps they were
finally beginning to learn the category defaults of A2 after seeing 16 to 20 instances.
This change eliminated the previous difference in STs between the Mixed and Contrast
conditions for A2 during this final block. However, overall memory for instances of A2
remained significantly higher in the Contrast condition than in the Mixed condition.
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Thus, the superior learning of category A2 observed in the Contrast condition during in
the second block was sustained into the third block.

The pattern of results was similar for category B. Subjects in the Contrast
condition saw no instances of category B prior to the third block, whereas subjects in the
Mixed condition saw 7 instances of category B prior to this block. Nonetheless, memory
for category B instances during the third block was significantly better in the Contrast
condition. The Contrast condition also showed marginally higher STs for variable
attributes than did the Mixed condition (p < .10).

Transfer of learning

When creating new categories, a rational learning process should avoid
unnecessary duplication by transferring the attribute structure and confirmed defaults of
the reference category to the new category. This process characterizes the S+C model of
category invention. In the present experiment, this process implies that subjects should
learn category A2 by modifying their representation of category Al, retaining the
superordinate defaults shared by the two categories while creating new norms to describe
the new subordinate defaults of A2. Thus, when first encountering A2 instances, subjects
should increase their attention (ST) to subordinate defaults, but not to superordinate
defaults and not to variable attributes. Despite this increased attention, memory for the
new subordinate defaults should be reduced for the initial instances of A2, compared to
previous trials in which these attributes had well-learned A1 default values. Memory for
the A2 subordinate defaults should increase thereafter as subsequent instances of A2 are
encountered and the new default norms are strengthened. In contrast to this pattern for
subordinate defaults of A2, memory for superordinate defaults shared by categories Al
and A2 should not be affected by the switch from category Al to A2, but should remain
at the same high level as in the preceding A1 block. Since memory for variables depends
on the degree of overall default learning, it should decrease during the early instances of
A2, but then improve as the new A2 defaults are learned.

The S+C model predicts a different pattern of results when category B is
introduced to the training sequence. Since both the super- and subordinate defaults of
category B differ from those of the two previous categories, learners would need to create
new norms for both sets of features as they acquired the B category. Thus, STs for both
sets of features should increase when the first instance of category B is presented, and
both sets should show decreasing STs as subsequent B instances are encountered and the
new defaults strengthened. In parallel, memory performance should show a drop-off for
both types of default attributes and variables when the first instance of category B is
presented. However, memory for the defaults and the variables should increase as the B
defaults are learned over the next few trials.




J. P. Clapper Unsupervised Learning
16

Study-time Data

The ST data in Figure 3a were largely consistent with these predictions. For
category A2, STs to subordinate defaults increased significantly (0.72 sec) on the first
instance compared to the preceding Al trial, while STs to superordinate defaults
decreased nonsignificantly (0.31 sec, p > .10). The large difference in STs between
super- and subordinate defaults on this trial significantly exceeded the corresponding
difference from the previous Al trial. STs to variables also decreased sharply on this
trial, because subjects allocated a larger share of the fixed study period to encoding the
new subordinate defaults, reducing the share left over for variables.

Following this first trial, STs to subordinate defaults decreased significantly over
the next few instances of category A2, reflecting their increasing strength in subjects’
category norms. Superordinate STs increased significantly over the same interval, while
the difference in STs between these two attribute types decreased, but remained
significant over the block as a whole. The increase in superordinate STs presumably
occurred because the proportion of the fixed study period available to study these values
would have increased as STs to subordinate defaults decreased over the first few
instances of A2.

A different pattern of ST results was observed when subjects encountered the
first instance of category B. Compared to the preceding trial, STs to both superordinate
and subordinate defaults increased on the first category B trial, although only the increase
in superordinate STs attained the 5 percent level of statistical significance. STs for both
superordinate and subordinate defaults decreased slightly over the first 3 instances of
category B, in contrast to the differential pattern shown over the first few instances of A2.

To summarize, the ST data showed a pattern of transfer predicted by the S+C
model of category invention. Most importantly, there was a significant difference in
transfer of super- vs. subordinate defaults from Al to A2, whereas no such difference was
observed at the origination of category B. The patterns of changing STs for super- and
subordinate defaults were also different over the early trials of A2 compared to the
corresponding B trials.

Instance Memory Data

The memory data are consistent with the evidence for transfer from the ST data,
but suggested that the transfer of superordinate defaults from A1 to A2 was incomplete
or imperfect. Memory for superordinate defaults decreased somewhat on the first A2
trial, compared to the previous Al trial, and then increased to its previous level over the
next few instances. This initial reduction in memory for superordinates was not predicted
by the S+C transfer model.

Memory for subordinate defaults was slightly lower than that for superordinates
on the first A2 trial, but this difference was not significant (p < .25). Memory for
subordinate defaults remained slightly depressed for the rest of the A2 block,
significantly so compared to the superordinates and the prior Al block.
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A somewhat different pattern of results was observed in memory for category B.
For the first instance of this category, memory for subordinate defaults remained at the
same level as on the previous A2 trial. However, memory for superordinates decreased
significantly on this trial, and then recovered to its previous levels on the following trial.
The sharp initial reduction in superordinate memory might have occurred because
subjects had learned to ignore superordinate defaults over the preceding Al and A2
instances, and were thus caught off-guard when these defaults were finally violated in the
first instance of category B.

In sum, the ST data showed patterns of transfer consistent with the S+C model of
category invention. However, the memory data failed to confirm the model’s prediction
that memory for superordinate defaults would remain at previous levels in the first
instances of A2. This lack of transfer in the memory measure might have been caused by
limitations in our subjects’ memorization abilities. If subjects were unable to remember
all the attributes in which the first instance of A2 differed from their prior norms for Al,
this confusion could have disrupted their transfer performance on the memory tests.
Given uncertainty about which values were changed and which had been left the same,
subjects might have made errors in verifying both super- and subordinate values. Since
this source of uncertainty was not present during encoding, when all features of an
instance were present for subjects to examine, it would not have affected observed
transfer on the ST measure. These issues will be discussed in greater detail below in the
General Discussion.

Experiment 2

Category invention implies that correlational patterns should be acquired more
easily in sequential than in concurrent presentation conditions. Two forms of sequential
presentation may be distinguished: (1) a pure blocking arrangement in which categories
are presented separately in unmixed blocks or series of instances, e.g., several instances
of category A followed by several instances of category B; and (2) a partially blocked
arrangement, illustrated by the Contrast condition of Experiment 1, in which categories
are learned one at a time as in the fully blocked sequence, but in which prior categories
continue to be shown as each new category is being learned.

Previous research on unsupervised learning (Clapper & Bower, 1994a, 1994b)
has shown high levels of learning in both blocked and contrast sequences when subjects
learned two contrasting categories. This result indicates that little retroactive interference
(RI) was exerted by the later category upon subjects’ retention of the earlier category in
these 2-category experiments, and that little forgetting of the earlier category occurred
due to simple delay. However, it seems likely that interference among the categories
would be more severe when three categories are shown, as in Experiment 1, and when
partial overlap among the defaults of these categories makes them more easily confused.
If this were the case, then the contrast sequence should show more stable category
learning than the blocked sequence, because subjects in the contrast sequence continue to
see instances of previously acquired categories, thus maintaining their learning of these
categories as they acquire new ones.
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Besides maintaining the learning of prior categories, the contrast sequence might
facilitate explicit comparisons between different categories as they are acquired. Each
time a training instance is classified in such a sequence, subjects receive practice in
distinguishing new from old categories. In a fully blocked sequence, on the other hand,
instances of previous categories are no longer shown once a new category is introduced
to the training sequence. As a result, the norms of these previous categories would
become less available from memory over subsequent trials of a new-category block. In
this situation, instances could be categorized more or less by default after the first few
trials of a new block, and subjects thus would receive less practice in explicitly
distinguishing between the different categories as they classified each training instance.

This difference in the trial-by-trial need for norm availability could affect what
subjects learn about the new category and the representation of this learning in memory.
Specifically, subjects in the Contrast condition might tend to form representations of each
category that contain explicit cues or mnemonics to help them tell the categories apart.
Such distinguishing features would likely be less prominent in subjects’ representations
of categories learned in the comparative isolation of a fully blocked training sequence.
As a result, subjects might experience difficulty in transferring norms of categories
learned in isolation to a mixed sequence in which these categories must be distinguished
from other, closely related categories. When such categories are shown in a mixed
sequence, subjects might be more likely to confuse the different correlational patterns,
mixing up the defaults of different categories and losing confidence in their norms for
each category.

The design of Experiment 2 allowed us to compare details of unsupervised
learning in such fully blocked vs. contrast sequences. The same mixed test block was
shown at the end of training in both conditions, allowing us to compare final levels of
learning and assess retention of categories learned earlier in both conditions. The
experiment also allowed us to separate the effects of simple forgetting from the effects of
the learning context. The last category presented in the Blocked condition should not be
forgotten prior to the mixed test block; thus, if this category shows weaker learning
during the test block than the corresponding category from the Contrast condition, this
difference could not be due to greater forgetting in the blocked sequence. Rather, it
would most probably be related to the differing contexts in which the categories are
acquired in the two sequencing conditions.

The stimulus set used in Experiment 2 had the same categories and correlational
structure as that used in Experiment 1, thus providing an opportunity to replicate those
transfer effects and confirm the S+C model of category invention. Such transfer in
learning new categories was expected in both conditions of the present experiment.
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Method

Subjects

The subjects were 28 students of San Jose State University participating in partial
fulfillment of their Introductory Psychology course requirement.

Procedure

The experimental procedure was identical in most respects to that of Experiment
1. Subjects were tested in groups of 10 to 15 for a single session lasting approximately
90 minutes. Each subject was individually seated at a computer terminal in a single large
testing room. The entire experiment, consisting of 54 trials plus instructions and
debriefing, was administered by computer. As before, each trial consisted of a 36 sec
study phase followed by a multiple-choice testing phase in which subjects had to choose
which of the four possible values of each attribute had been presented in the last instance.
The computer recorded how long subjects spent looking at each attribute as well as their
recognition memory accuracy for each attribute during the test phase.

Materials and Design

The learning instances and categories were the same as in Experiment 1. That is,
subjects learned the three categories Al = 1111111111xx, category A2 = 1112222222xx,
and category B = 333333333xx.

Subjects were randomly assigned to two different conditions. The Contrast
condition was similar to that of Experiment 1. Only instances of category Al were
presented during the first block of 12 trials in this condition. Following this, 10 instances
of category Al and 12 instances of category A2 were presented in the second block in
random order. During the third block, subjects saw 6 instances each of categories Al and
A2, and 8 instances of category B, presented in random order. As in Experiment 1, there
was no break or separation between blocks, except that a new category was presented at
the start of each block.

In the second, Blocked condition, categories were initially separated in the
training sequence prior to being presented together in a mixed sequence near the end of
training. The first block was the same as that of the Contrast condition, i.e., 12 instances
of category Al. This was followed by a second block in which 12 instances of category
A2 were presented, and then by a third block containing 10 instances of category B. The
fourth block contained the same instances as the third block of the Contrast condition,
i.e., 6 instances of category Al, 6 instances of A2, and 8 instances of category B. Asin
Experiment 1, this final block will be referred to as the test block in both conditions, and
all the preceding blocks will be referred to as training blocks.
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Balancing the Design

As in Experiment 1, stimuli were generated from coded specifications from a
computer file. The order of instances within a block of trials (described above) was
shown to each subject in a different random order, but the blocks themselves were
presented in the same order to all subjects within a given condition. The assignment of
attributes (serial positions) in these instance codes to concrete stimulus attributes such as
"bark color" or "leaf shape” was randomized separately for each subject. Care was taken
to ensure that each value of the variable attributes occurred with approximately equal
frequency within each block and over the experiment as a whole. The same was true for
each of the 16 possible combinations of the two variable values. The order in which
attributes were listed during the study phase was also randomized separately for each
subject, and remained constant for that individual throughout the experiment. The order
in which attributes were queried during the multiple-choice testing, as well as the order in
which the alternative values were listed, varied randomly over trials for each subject.

Results and Discussion

The same recognition memory and ST data were collected in this experiment as in
Experiment 1 and are displayed in Figure 4.

Insert Figure 4 about here

The Contrast condition showed much the same pattern of learning as the
corresponding condition from Experiment 1. Each of the three categories were learned
rapidly according to both the ST and memory indicators, and this learning was retained
over subsequent blocks (the second and third blocks for category Al and the third block
for category A2). The Blocked condition also showed strong learning of all three
categories during the training phase. However, both the memory and ST indices
indicated that performance based on learning of all three categories in the Blocked
condition decreased during the final test block, when instance of the three categories were
presented in a mixed sequence.

During the training phase, according to the ST measure, learning appeared a bit
higher in the Blocked condition than in the corresponding trials of the Contrast condition
whereas the memory data appeared to show a bit more learning in the Contrast condition.
However, neither of these differences were statistically significant (pp < .10).

Although learning in the two conditions was roughly equal during the training
phase, performance in the Blocked condition appeared lower during the test block, when
categories previously shown separately were presented together in a mixed sequence. As
a result, default learning appeared stronger in the Contrast condition than in the Blocked
condition during this test block. All three categories were remembered significantly
better in the Contrast condition. Moreover, STs to variable attributes were also higher in
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this condition.

Importantly, learning was higher in the Contrast condition even though more
instances had been shown from a given category in the Blocked condition, i.e., from
categories A2 and B. A particularly interesting result was the significant difference in
final learning of category B. Although subjects in the Blocked condition had been shown
10 successive instances of category B immediately prior to the test block whereas
subjects in the Contrast condition had seen no previous instances of this category,
learning was significantly lower in the Blocked than the Contrast condition.

Besides revealing poorer learning during the test block, the Blocked condition
also performed unequally with the three categories in a manner related to their order of
acquisition. The average variable ST during the test block was 3.67 seconds for instances
from the first category (Al), 3.28 seconds for instances of the second category (A2), and
3.83 for instances of the third category (B). The test for a quadratic trend over these three
categories was marginally significant, (p < .10). This ST data thus showed a U-shaped
pattern of category learning that resembled the familiar "serial position effect” observed
in verbal learning (Murdock, 1962).

The memory data appeared to show a slight serial position effect in its pattern of
means during the test block (.91 for category Al, 0.86 for A2, and 0.88 for B), but the
quadratic test was nonsignificant in this data (p > .15). The corresponding ST and
memory data from the Contrast condition showed no evidence of such a serial position
effect, with no significant differences between the category means of either variable ST's
or overall memory.

Is it forgetting?

One hypothesis to explain better final performance in the Contrast condition is
that subjects might forget earlier categories as they acquired later ones in the Blocked
condition, whereas the continued practice on earlier categories prevented such forgetting
in the Contrast condition. While this forgetting explanation explains the apparent loss of
Al and A2 learning between training and test phases of the Blocked condition, it fails to
explain the lowered performance far category B during the test block, since this category
was learned immediately prior to the test block and no significant forgetting could have
occurred over this interval. The fact that category Al showed equal performance to
category B during the final test block casts further doubt on the forgetting explanation,
since that would expect better performance on the more recent category.

These arguments against a simple forgetting-based explanation imply that some
of the differences in learning between the Blocked and Contrast conditions may have
been due to the different contexts in which categories were acquired in the two
conditions. Different types of encoding contexts may have caused subjects in the two
conditions to form subtly different category representations in memory. In the Blocked
condition, categories were learned in relative isolation. In the Contrast condition,
instances of previous categories continued to be practiced as new categories were being
learned, so each new category was acquired in a context in which category comparisons
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were required to classify each training instance. It seems reasonable to assume that such
frequent comparisons led to representations which differentiated each category from
related categories in a more explicit manner than in the Blocked condition. If the
representations formed in the Contrast condition highlighted features promoting
discrimination more than those formed in the Blocked condition, they should transfer
better to a Mixed test block such as that shown at the end of training.

Thus, the fact that category B was learned separately from the other categories in
the Blocked sequence might have been partly responsible for the apparent loss of B
learning in the test block. Because of this isolated learning context, subjects failed to
learn category B in a way that would later allow it to be easily distinguished from other,
similar, categories in a mixed testing sequence. The same would have been true of their
earlier learning of the Al and A2 categories. As a result, presenting these categories
together at the end of training caused learners to become confused, perhaps mixing up
which default values were associated with the different categories, or evoking
inappropriate categories to describe particular training instances and thus contaminating
the default norms for one category with values from a different category. If subjects’
norms for category B were to be contaminated or eroded by such confusion, the sharp
drop-off in learning of this category during the test block would be explained.

Transfer of learning

We expected to find patterns of transfer in both conditions of this experiment
similar to those observed in the Contrast condition of Experiment 1. Since category A2
shared superordinate defaults with the previous category, Al, whereas category B
contrasted with Al and A2 on both sub- and superordinate defaults, we expected to
observe different patterns of transfer when A2 vs. B were first encountered and learned.

Consistent with the results of Experiment 1, when the first instance of A2 was
presented, STs in the contrast condition increased for the changed subordinate defaults
while decreasing slightly (but significantly) for the unchanged superordinate defaults. By
contrast, STs increased nonsignificantly for both types of attributes on the first instance of
category B compared to the previous instance of category A2.

Similar patterns of transfer were observed during the training phase of the
Blocked condition. Here, subordinate STs increased significantly when the first instance
of category A2 was shown, whereas STs for superordinates remained unchanged. When
the first instance of category B was shown, STs increased significantly for both types of

attributes.

In both conditions, subordinate defaults were studied significantly longer than
superordinates on the first A2 trial, but there was no difference between them on the first
B trial. The differences between super- and subordinate defaults decreased in an orderly
fashion over the first 3 instances of category A2 in both conditions, while STs remained
the same for both types of attributes over the corresponding instances of category B.
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As in Experiment 1, however, the memory data suggested that the transfer of
superordinate defaults from category Al to A2 was incomplete or imperfect. In both the
Contrast and Blocked conditions, memory for both superordinate and subordinate
attributes decreased on the first instance of A2 compared to the preceding Al instance.
(Recall that complete transfer would imply that memory on this trial would decrease only
for subordinates). A similar pattern was shown on the first instance of category B.

To sum up the transfer results, subjects were apparently able to use prior Al
learning to attend more to new subordinate defaults and less to unchanged superordinates
while encoding the first few instances of A2, as predicted by the S+C model of category
invention. However, the decrease in memory for superordinates at the start of A2
learning suggests that, as in Experiment 1, the transfer of A1 defaults to A2 may have
been limited by subjects’ rote memory abilities, i.e., by their difficulty in remembering
which defaults had been changed from A1 to A2, and which had remained the same.

Experiment 3

Experiments 1 and 2 showed patterns of transfer supporting the normative S+C
model of category invention. However, subjects in those experiments showed
incomplete transfer of superordinate defaults, perhaps due to their limited ability to
remember which default values had been changed in the new category and which
remained the same. If these memory limitations were reduced by the use of stimuli that
were more easily remembered -- for example, pictures rather than lists of verbal items --
then in theory subjects should produce complete, 100% transfer of superordinate defaults.

Another problem with the transfer evidence from Experiments 1 and 2 is that the
switch from category Al to A2 always occurred prior to the presentation of category B in
those experiments. Thus, when subjects encountered the first instances of category A2,
the superordinate defaults which they shared with A1 were the only values of these
attributes seen in the training instances up to that point (subjects would have seen all four
values during the testing phase of earlier trials, however). By contrast, if category B had
been shown prior to Al and A2, then subjects would have seen two different values on
both super- and subordinate attributes before encountering their first instance of A2. In
theory, transfer between Al and A2 should be unaffected by these differences in the
sequencing of categories, but the results of the previous two experiments leave this
assumption untested.

The present experiment differed from Experiments 1 and 2 in two ways. First, it
used pictorial stimuli instead of verbal materials. Since much research (e.g., Paivio, 1969,
1971, 1978) has shown that memory for pictorial materials tends to exceed memory for
verbal materials, we expected to obtain more complete transfer between overlapping
categories in the present experiment than was observed in Experiments 1 and 2. Also due
to this superior pictorial memory, and because pictorial materials are generally more
distinguishable than list materials, category learning should be more stable than we
observed in prior experiments. Thus, even though the categories in the present
experiment were presented in a blocked rather than a contrast sequence, less deterioration
in performance should occur during the final mixed test block of the present experiment
than occurred in Experiment 2.
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The features of pictorial stimuli cannot easily be presented and studied one item
at a time like a verbal list, so the attribute-listing procedure used to index unsupervised
learning in Clapper and Bower (1991, 1994a) was used in the present experiment, with
minor changes in task instructions. Subjects were asked to list only the distinguishing
features of each instance; since variables distinguish instances within a category whereas
defaults do not, the proportion of defaults vs. variables listed on a given trial provided an
index of learning analogous to that provided by STs in Experiments 1 and 2.

The present experiment also differed from Experiments 1 and 2 in presenting
four categories instead of three. Two of these categories shared one set of superordinate
defaults and differed along their subordinate attributes (categories Al and A2), while the
other two categories shared a different set of superordinate defaults and were
distinguished by different sets of subordinate defaults (B1 and B2). The categories in
this experiment were presented in the sequence Al - A2 - B1 - B2.

Method

Subjects

The subjects were 15 undergraduate students of Stanford University,
participating in partial fulfillment of an Introductory Psychology course requirement.

Procedure

Subjects were tested individually for a single session lasting 60 min. The
training instances were realistic line drawings of fictitious insects, presented in a 48-page,
8 by 11.5 in. booklet. Included with this booklet were printed instructions and an
agreement that subjects signed to indicate their informed consent to participate. A single
training instance (insect picture) appeared on each page, together with brief instructions
for the experimental task.

Subjects were instructed to write on each page those distinctive properties of the
presented insect that would be useful for telling it apart from other insects of the same
general type. Subjects were told to imagine that they were writing their lists to prepare
for a later multiple-choice recognition test in which they would be asked to match each
list with its corresponding insect from among several distractor items (i.e., other insects
from the same test booklet). It was suggested that subjects should list only those
properties that would be necessary to identify an insect on such a test, and to omit all
non-distinguishing properties. To increase the force of these instructions, subjects were
told to imagine they would be charged $0.25 for each feature they listed, but that they
would also be charged $1.00 for each item they answered incorrectly on the multiple-
choice test.
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Subjects were also instructed to look only at the page of the booklet on which
they were currently working, and not to look backward or forward at other pages. They
were allowed to complete the experimental task at their own pace. Once they had
finished, subjects were given a debriefing page that explained the procedures and goals of
the experiment, and were allowed to leave.

Materials and Design

The stimuli were line drawings of fictitious insects, all of which shared a
common "base" structure (e.g., head, thorax, abdomen) plus eight dimensions of variation
(attributes), such as wing shape, abdominal markings, eye color, etc. Each attribute had
2, 4, or 8 discrete values (e.g., wings of different shapes, eyes of different colors),
depending on its role in the experimental design.

Subjects were assigned to two different conditions, referred to as the Blocked
condition and the Random Control condition. In the Blocked condition, the stimuli could
be divided into four distinct categories based on the correlational structure of the stimulus
set. The categories were designed as follows: Category Al =111111xx, category A2 =
111222yy, category B1 = 222333qq, and category B2 = 222444rr, where x,y q, and r
denote different pairs of values of variable attributes occurring in each of the four
categories. Thus, the variables attribute had a total of 8 different values, but only 27 x4
= 16 out of a possible 82 =64 possible combinations were used, so the total stimulus set

consisted of 16 training instances, 4 from each category.

In the Control condition, each attribute had the same number of values as in the
Blocked condition, but each attribute varied independently of the others, i.e., no features
consistently covaried, so there were no categories in the stimulus set for this group.
Thus, 3 of the attributes took on 2 different values, 3 others took on 4 values, and the
remaining 2 took on 8 values, for a total of 32,768 possible instances. Of these, 16 were
presented in this experiment. These were selected such that none of the attributes were
correlated within the chosen subset.

For convenience, the training sequence in the Blocked condition can be divided
into a training phase and a test phase. (However, subjects were not informed this
distinction, and no break or change in procedure occurred between phases). During the
training phase, instances from each category were presented separately in four blocks.
Ten instances of category Al comprised the first block, followed by a block of 10
instances of A2, then 10 instances of B1, and finally 10 instances of category B2. Since
there were only 4 possible instances of each category, 6 of these were presented twice in
the training condition, and the remaining 2 were shown once. The order of instances
within a block was arranged randomly, except that no instance was ever shown twice in
succession.

Following the four training blocks, a fifth (test) block consisted of 8 instances, 2
from each category, shown in an intermixed sequence. (No two instances of the same
category could occur in succession during this test phase). The instances from each
category shown in this block were those that had been shown only once in the prior
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training block.

The order of stimuli within the Control condition was determined by random
assignment, with the constraint that the entire stimulus set be shown before the a given
instance was repeated.

Results and Discussion

The data consisted of the proportion listed of each of three types of attributes: the
3 superordinate defaults, the 3 subordinate defaults, and the 2 variable attributes. These
data are displayed in Figure 5. A larger number of subjects were assigned to the Blocked
condition than to the Control condition, because we wanted to explore the detailed
pattern of results from the Blocked condition. The Control condition was included only
to provide a baseline and to ensure that learning effects in the Blocked condition would
be due to the interfeature correlation rather than to the types of attributes having different
numbers of values. Thus, the random assignment procedure was adjusted to assign 3
subjects to the Blocked condition for every one assigned to the Control condition; this
caused 11 subjects to be assigned to the Blocked condition and 4 to the Control
condition.

Insert Figure 5 about here

The main prediction in this experiment was that subjects in the Blocked
condition would show strong, stable learning of all four categories and that the patterns
of transfer between categories would provide further evidence for the S+C model of
category invention.

As expected, rapid learning of all four categories was clearly evident in the
Blocked condition. Learning was indexed by subjects’ tendency to list variable attributes
and to omit superordinate and subordinate defaults from their lists. The average listing of
superordinate defaults over the experiment as a whole was 0.04, that of subordinate
defaults was 0.16, and that of variables was 0.94. The differences between the default
and variable attributes were highly significant throughout the experiment for all four

categories.

In this experiment, variable attributes took on more values (8) than did
subordinate defaults (4), which in turn took on more values than superordinate defaults
(2). On the basis of this difference, 8-valued variables might be expected to be listed
more often than 4-valued subordinate defaults, which would in turn be listed more often
than 2-valued superordinate defaults. Within the Control condition, the 2-valued
attributes were indeed listed less often (at 0.47) than either the 8-valued attributes (at
0.74) or the 4-valued attributes (at 0.72); the latter two did not differ significantly. Thus,
the number-of-values factor contributed to a difference even without correlated attributes
and categories. However, the patterns differed in the two conditions; whereas in the
Blocked condition the listing of variables was in the higher range and that of super- and
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subordinate defaults was lower, in the Control condition the listing of 4- and 8-valued
features were both in the higher range and that of 2-valued attributes was lower.

Direct comparisons between the Blocked and Control conditions indicated that
the learning observed in the Blocked condition was not merely an artifact of defaults and
variables having different numbers of values. Using the same summary index of learning
described above (subtracting the proportion of defaults listed from that of variables listed
on each trial), we compared learning between the two conditions. For the four training
blocks, the average difference of 0.83 in the Blocked condition was reliably greater than
the 0.15 difference from the Control condition. This difference remained highly
significant when examined during the test block or when separated by individual
categories. 3 Thus, the data showed strong learning and stable retention of categories in
the Blocked condition.

In addition to the strong overall learning observed in the Blocked condition, the
patterns of attribute listing at the transition points as different categories were introduced
implied significant transfer of learning between them. Listings at these transition points
increased only for the defaults that changed with the new categories, but the defaults that
remained constant continued to be listed at a low level.

When categories differed only in terms of their subordinate attributes (Al vs. A2,
B1 vs. B2), then listings increased only for these changed attributes, while listing of
unchanged, superordinate attributes remained roughly constant. Thus, when the first
instance of A2 was shown following learning of category Al, listings of subordinate
defaults increased greatly compared to the preceding instance of Al, while listings of
superordinates and variables remained unchanged. Listing of subordinate defaults
decreased following the first instance of A2, returning to their previous level by the end
of the A2 block. The same pattern of significant results occurred at the transition
between categories B1 and B2.

When both superordinate and subordinate attributes were changed in a new
category (from A2 to B1), listing increased somewhat for both types of attributes. This
increase was marginally significant averaged over super- and subordinate defaults (p <
.10). The modest increases in listing at this transition may have reflected the fact that six
default values were switched rather than only three, as at the other category transitions in
this experiment. This added competition may have reduced the number of defaults at
each level that might otherwise have been listed.

As expected, listings of both types of attributes declined to previous levels over
the next few B1 trials. (Listing of subordinates actually fell to slightly below their level
in the previous A2 block, p < .10). Listing of variable attributes was unaffected by the
switch from category A2 to category B1, remaining near ceiling levels for the attribute
listing measure and not differing significantly from listings during the preceding block (p
> 25).

Recall that instances of all four categories were shown during the final 8 trials.
Listings showed no significant change during this block from those at the end of the
previous B2 block (p > .10). Thus, the category norms acquired during the earlier
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blocked training phase were sustained into a mixed presentation test with no apparent
reduction in learning.

The results of the present experiment showed no evidence of unstable category
learning, as had been observed in the Blocked condition of Experiment 2. The greater
retention of category learning observed in this experiment may have been fostered by
subjects having better memory for individual instances. This advantage might have been
due to the use of pictures rather than as verbal lists, since pictures are typically
remembered better than verbal materials (e.g., Paivio, 1969, 1971, 1978). This higher
memory for individual instances might have resulted in stronger, more stable norms
being acquired for each category. A related point is that pictures are more obviously
dissimilar than are equivalent verbal lists; for example, many global or configural
features can distinguish different pictures, whereas lists differ primary in the meanings of
their individual items. Similarly, common patterns abstracted from several pictorial
stimuli might be more distinguishable than otherwise comparable patterns abstracted
from a series of verbal lists, over and above the superior memory for individual instances
expected for pictorial stimuli. Because of the gre:ter inherent discriminability of pictures
and pictorial patterns compared to lists of verbal items, subjects learning pictorial
(compared to verbal) categories might be expected to maintain the strength of the
category norms even as the context is switched from a blocked to a mixed training

sequence.
General Discussion

These experiments investigated unsupervised learning in stimulus domains
characterized by partially overlapping categories and subcategories, and aimed to provide
information about how categories are discovered and applied to facilitate the learning of
further categories and instances within such domains. As in previous research (Clapper
and Bower 1994a, 1994b), the experiments provided evidence that correlation-based
categories are unlikely to be acquired solely through direct strengthening of correlational
rules or associations; rather, our evidence strongly suggested that categories were
invented explicitly in response to the contrast between novel stimuli and the norms of
already learned categories.

Evidence for such contrast-based learning had previously been obtained for
different stimulus modalities (pictorial vs. verbal stimuli), and for two different task
paradigms with a total of three dependent measures (listing preferences in the attribute
listing task, STs and recognition memory in the instance memorization task). Contrast-
based learning was also implicated when default values occurred probabilistically as well
as in 100% of the instances from a given category.

The present results provide additional evidence for the generality of a category
invention process: we show that it is not restricted to two category situations
investigated before, but also characterizes unsupervised learning when a larger number of
contrasting patterns are present in the stimulus set. Moreover, the present results
demonstrated subjects’ use of category invention to acquire new categories that shared
default values with prior categories (i.e., in a hierarchy) whereas in our previous research
the categories had contrasting values on all their default attributes.
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The combined evidence from this research suggests that category invention is a
central method by which human learners acquire categories based on correlational
patterns observed in unsupervised tasks. While these experiments do not deny the
possibility of autocorrelation as a learning method in some situations, our results do
constitute a strong "existence proof"for category invention as a basic capability of human
learners for internalizing such patterns.

The present experiments also demonstrated significant transfer of default norms
between overlapping categories, and provided evidence consistent with the normative
S+C model of category invention. Thus, people used existing category knowledge to
increase their efficiency of learning contrasting categories, much as category knowledge
is used to improve the learning of individual training instances. The evidence for the
transfer of shared defaults was quite robust, occurring for both verbal and pictorial
stimulus materials, with different numbers of categories (3 vs. 4), and at different points
in the training sequence (early vs. late).

Despite this evidence for the transfer of shared (superordinate) defaults, the
memory data from Experiments 1 and 2 implied that this transfer was not complete or
flawless. Subjects’ recognition memory for shared defaults decreased for the first
instance of a new category, whereas in theory performance should have remained at the
same level as in the preceding reference category. One plausible explanation of such
incomplete transfer is simple memory limitations, i.e., subjects during memory testing
may have been unable to remember the full list of changed default values after seeing the
first instance of the new category, leading to uncertainty about which 7 values of the
reference category had been changed and which 3 had remained the same for the new
category.

Importantly, this uncertainty would have only been present during the testing
phase of a given trial, but not during the initial study phase. During the study phase,
subjects should have had no difficulty in distinguishing between old and new defaults,
since the new "defaults” would at that point appear as salient violations of the subjects’
existing category norms. But once the training instance had disappeared from subjects’
computer screens and the memory testing of that instance began, subjects’ lack of
complete memory for the features shown during the study phase could then reduce their
confidence on the memory tests.

The experiments described above also suggested that certain factors may limit or
constrain subjects’ retention of earlier categories in the face of decay and interference
caused by learning later categories. In Experiment 2, subjects who learned categories
separately in a blocked sequence showed significant loss of this learning when the
categories were later shown in a mixed sequence. The reduction in later performance
may have arisen because subjects became confused as to which particular default values
were associated with which category, mixing up default values from different categories
and eroding their confidence in the defaults of all the categories.
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Such instability was less evident in the Contrast conditions of Experiments 1 and
2. These subjects learned each category in the context of prior categories, i.e., instances
of previously-learned categories continued to be shown intermittently as the new
category was learned. Thus, subjects received practice in distinguishing each new
category from similar, previously learned categories. Such training presumably caused
them to form category representations that highlighted the useful distinctions between the
different categories, and which thus facilitated effective discrimination performance. On
the other hand, subjects who learned each category separately in the Blocked condition of
Experiment 2 might have formed category representations that were more fragile than
those formed in the Contrast condition, and these differences caused poorer
discrimination performance in the later mixed sequence. The advantage of our Contrast
condition is much like the long-term memory advantage conferred by distributed rather
than massed practice of verbal associations (see, e.g., Baddeley, 1990).

Experiment 3 employed pictorial stimuli which led to very stable categories in
the Blocked condition of that experiment, compared to the verbal categories of the
Blocked condition of Experiment 2. Stimulus materials that are inherently easier to
remember and distinguish should lead to categories (or category norms) that are more
memorable and distinguishable. This generalization should hold true not only for the
difference between pictorial and verbal stimuli, but also for other stimulus factors
affecting memorability such as complexity, familiarity, and meaningfulness of the
training stimuli.

Theoretical implications

A variety of models have been published in the literature of cognitive psychology
and artificial intelligence that address the problem of learning categories without
supervised feedback. The present results, taken together with those of Clapper and
Bower (1991, 1994a, 1994b), place strong constraints on which of these can be
considered accurate descriptions of unsupervised learning by humans when memory is
greatly limited. In particular, an accurate model must include a capacity for inventing
new categories based on explicit contrast with the norms of prior categories. Models
restricted to some form of autocorrelation (such as testing a series of correlational
hypotheses or accumulating a matrix of interfeature correlations) would seem unable to
accommodate the pronounced contrast effects observed in these experiments. Of course,
such contrast effects do not imply that humans lack any capability for autocorrelation,
nor do they rule out a mixed model which includes combinations of category invention
and autocorrelation. However, the low level of learning observed in mixed training
sequences of Experiment 1 and in our earlier experiments (Clapper and Bower, 1994)
suggests that autocorrelation is a rather weak learning method in humans, at least for the
types of categories and complex stimulus materials used here.

The present results also indicate that an acceptable model of human unsupervised
learning should have the capability to transfer generalizations learned about previous
categories to overlapping new categories. Thus, the category invention process must
conform approximately to the basic S+C encoding framework. Models that, in effect,
discard all prior norms when an executive process decides to assign a novel stimulus to a
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new category are thus incompatible with our results. For example, certain 2-layer
connectionist models (e.g., Grossberg, 1980; Carpenter & Grossberg, 1987; Rumelhart &
Zipser, 1986) include a capacity for "novelty detection": If a pattern of activity on the
first ("stimulus") level of the network is sufficiently different from previous patterns, a
new second-level ("category") unit is activated. This is equivalent to assigning the novel
stimulus pattern to a new category. However, associations between shared pattern
elements and the first response unit (category) are not transferred to the second résponse
unit in such a network, thus such a model would not produce the default transfer
observed in the present experiments.

We also think that an adequate learning model should include the capability to
learn categories while at the same time using that knowledge to optimize the encoding of
individual training instances. This optimal encoding is achieved by allocating more
attention to the features of an instance the more uncertain or novel the feature is with
respect to category norms. This pattern of attentional allocation was observed in all our
instance memorization experiments, as well as in earlier experiments investigating
schema-based memory for events and persons (e.g., Graesser et al, 1980; Srull & Wyer,
1989). Most models designed to learn categories or correlational patterns assume that
subjects are biased to attend mainly to features that are diagnostic (predictive) of the
categories being learned; these predictive features are the same as our category defaults
(e.g., Billman & Heit, 1988). Such models are designed mainly to classify instances, not
to apply them to facilitate further learning (i.e., of instances or of related categories), and
so they postulate patterns of attentional allocation that are contrary to those expected by
the S+C encoding model. The attentional assumption of such models would need to be
revised to accommodate the patterns of attentional allocation observed in our
unsupervised learning experiments.

In addition to providing evidence for basic capabilities such as category
invention or default transfer, the present experimental paradigms provide rich
information about additional factors which control or limit the application of these basic
capabilities. For example, we have seen how the stability of categories can be limited by
factors relating to the stimulus materials or the context of acquisition. By accumulating
information about how various factors influence unsupervised learning, such research
should enable the development of more powerful and detailed theoretical models, with
accompanying increases in predictive power. By observing when people seem to
conform to normative learning strategies, and when human capacity limitations or other
factors interfere with such normative strategies, we may begin to construct a detailed
picture of human learning mechanisms.
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1. In proposing this dichotomy, we exclude models which assume that learners
first memorize an entire set of training instances, and then compute an optimal set of
generalizations across this memory set (e.g., Fried & Holyoak, 1984; Michalski & Stepp,
1983); Such models seem unrealistic as descriptions of human learning due to their
assumption of unlimited memory and computational capacity. In this article, we assume
that subjects update their conceptual norms in response to each instance they encounter
(sequential or incremental learning assumption). This means that on each trial subjects
compare the current instance to their existing category norms, and update these norms
based on this simple comparison.

2. We may conceive of subjects inferring default norms by a Bayesian strategy in
which they begin with prior beliefs about equiprobability of values of an attribute, and
they modify these equiprobable-value beliefs as successive instances exhibit consistent
values (of 1 or 2) on the relevant attributes. Thus, subjective confidence in default norms
would reflect this pooling of instance data with prior beliefs.

3. Since the Control condition presented a random sequence throughout the
experiment with no division into different blocks, we used the difference averaged over
all 48 trials as our reference baseline for these comparisons.
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Figure Captions

Figure 1. Sample stimulus sets illustrating how categories are defined in terms of
correlated attribute values. The 8 attributes are arrayed in columns, and numerals (1, 2)
denote different values of the column attribute. An x denotes a variable attribute which
may take on either value for instances with that category. Fig. la illustrates two
categories defined by 5 perfectly correlated features. Fig. 1b illustrates patterns with no
discernible categories.

Figure 2. Computer display as it appeared during each phase of Experiments 1 and 2.

Figure 3. Study time and recognition accuracy data from Experiment 1. In this figure,
the functions connecting the "O" points are for the superordinate defaults, those
connecting the "*" points are for the subordinate defaults, and the "." points are for the
variable attributes. The plots are divided by category, and the plots for the Contrast
condition are further subdivided in terms of whether a given set of instances occurred in

the first, second, or third block of trials.

Figure 4. Study time and recognition accuracy data from Experiment 2. As in Figure 3,
the "O" points are for superordinate defaults, the "*" points are for subordinate defaults,
and the "." points are for variable attributes.. For the Contrast condition, the plots are
divided by category and block as in Figure 3. For the Blocked condition, the plots are
also divided by category, and the trials for each category are separated into training vs.
test blocks.

Figure 5. Attribute listing data from Experiment 3. Trials are shown in their original
order in both plots, and the plot for the Blocked condition is divided by categories and to
indicate the mixed test block.
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Figure 2.
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Figure 3.
2. Contrast Condition: STs

ist 2nd 3rd 2nd 3rd 3rd

Category Al Category A2 Category B
b. -

Contrast Condition: Memory

1lst 2nd 3rd 2nd 3rd . 3xrd

Category Al Category A2 Category B
c. Mixed Condition: STs

Category Al Category A2 Category B

d. Mixed Condition: Memory

Category Al Category A2 Category B




Study Time

Recognition
04 05 06 07 08 09

Study Time

Recognition

1.0

J.2.Clapper Unsupervised Learning

39
Figure 4.
a. : Contrast Condition: STs
1st 2nd " 3rd 2nd 3rd 3rd
Category Al _ Category A2 Category B
b. . Contrast Condition: Memory

.

= = N9

(G0 _Jot
No-

W

ﬁ“’“’%

1st 2nd 3xrd 2nd 3rd 3rd
Category Al Category A2 Category B
c. ' " Blocked Condition: STs

TN

04 05 06 07 08 09 10

training test training test training test
Category Al Category A2 Category B
d. Blocked Condition: Memory

W

training test training test  training test
Category Al .~ Category A2 - Category B




Percent Listing

0.2

Percent Listing

1.0

0.8

06

0.4

0.0

1.0

08

0.6

0.4

0.2

0.0

J.P.Clapper

Figure 5.

Blocked Condition

Unsupervised Learning
40

Trials

Control Condition

10

20

Trials




Learning Categories Without Teachers

By

Gordon H. Bower and John Clapper
Stanford University

Paper presented at "Practical Aspects of Memory" Conference. University of
Maryland. August 2, 1994

Research Supported by the Air Force Office of Scientific Research, Grant
#AFOSR-87-0282




t9

One of the practical tasks people face is how to learn about their
environment, in particular, how to categorize and classify the objects and events
around them. Practically all experimental research on category learning has
studied what is called "supervised learning,” wherein a tutor or supervisor
teaches a concept to a learner by providing trial by trial feedback regarding the
learner's tentative classification of a series of patterns.

We will address a different issue here, namely, how people learn categories
when they have no teacher, when left on their own to discover any usable
clustering of stimuli that they can. We call the general paradigm "unsupervised
learning", because it involves no supervisor or trainer who provides feedback to
learners about the current classification. In fact, in our experiments with college
students, we never mention categories or category learning. From the subjects’
point of view, they are simply trying to memorize each instance or stimulus
pattern as it's presented.

We believe that this kind of unsupervised discovery of categories occurs
often in real life, perhaps as preverbal children explore their world of perceptual
objects, as they learn their language, or whenever pioneers in any unexplored
field try to classify the varieties of things that nature serves up to them.
Unsupervised category learning occurs in formal school settings often under the
name of "discovery learning" wherein students are permitted to explore a given
physical domain in hopes that they will stumble upon its underlying structure or
principles.

In our research we use as stimuli collections of trees or of insects such as
these (Overhead #1). We've composed these pictures on a Macintosh computer;
the insects vary in many physical features, and we define a category of bugs
according to which features go together. Thus, these bugs arranged in two
columns fall into two categories; they differ in their body shape, color, type of
wings, antennae, and front pincers, whereas the eyes, tails, and legs vary within
the categories. We can represent the stimuli in abstract binary notation with
each instance represented as a row vector, as shown here (Overhead #2). In this
illustration, the first 5 of 8 attributes have correlated values of 1 in Category A
and 2 in Category B, whereas the last 3 attributes vary randomly within the
categories. We refer to the first attributes as predictable or default values of the
relevant attributes, and the second as variable values of the unpredictable
attributes.

We were interested in two questions. The first question was how to measure
category learning in this domain where categories are never mentioned to
subjects. The second question was how to arrange sequences of training stimuli
shown one at a time in order to speed up category discovery and use.
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Turning to the first issue, how might we measure category learning in such
situations in which categories are never mentioned? We did this by giving
subjects the goal of remembering each of the instances as they were presented
one by one. Shown a bug, subjects were asked to list a few of its attributes that
would enable them to remember it later, in the sense of being able to pick it out
from 3 other similar bugs on a recognition memory test. Subjects were urged to
list as few attributes as possible, but ones that would be maximally informative
for picking out this bug on a later test. That later test in fact was never given.

Here is an example (Overhead #3) of what a subject listed for this insect:
white eyes, thin wings, black vase-shaped abdomen, 1 stinger, 2 white antennae,
and 2 clawlike pincers.

So, what might we expect subjects to do in this task? Subjects might play
dumb, and simply list and record in memory for each instance most of its
features, leading to a memory representation like that shown at the top of this
overhead (Overhead #4). But an intelligent learner ought to follow a "schema-
plus-corrections” strategy which leads to a type of memory representation
illustrated at the bottom of the overhead. By this strategy, subjects should
record a new instance by first noting one or more of its defaults to indicate its
category, and then, by listing the unpredictable or variable attributes which
would serve to uniquely identify this particular instance within the category. Of
course, to follow this strategy, subjects must have first formed a category based
on noticing consistently correlated defaults. Looked at from another perspective,
however, we can take as an indirect measure of category learning the extent to
which subjects stop listing the predictable defaults but increasingly list the
unpredictable, variable attributes of the instances.

It turns out that actual learners--at least, college students--come to
approximate this ideal pattern. Their performance is illustrated in the next
overhead (Overhead #5); these are subjects who first see 16 patterns of one
category (call it A) followed by 16 of a second category (called B), followed
finally by a mixture of 4 A and 4 B test patterns. The top figure shows the
percent of default attributes that subjects list; this drops rapidly from around
60% for the first bug to around 15% by the 10th bug. The listing of default
attributes rises abruptly when the first B pattern comes along, since subjects are
surprised by the novel values of its default attributes. But here again, listing of
default values for the B patterns quickly drops off to near the minimal value as
the B-category norms are learned. The minimum number of defaults subjects
should record is one out of 5, or 20%, which is exactly where they're performing.
It's significant, too, that subjects are not disrupted when, in the final block of
trials, they encounter a mixed series of A's and B's. They obviously were able to
maintain intact the separate norms for the two categories.
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The percent listing of unpredictable, variable attributes at the bottom of the
overhead is just the mirror image reflection of the default-listings above. During
the inital A-series, subjects learn to identify and list increasingly the variable
attributes of the instances; this dips a bit when they hit the first surprising B
stimulus when they have to record the new defaults, but listing of variables
quickly recovers to a high level throughout the following mixed series of As and
Bs. As you can imagine, a useful index of learning is simply the difference in
percentage listing of variable minus default attributes.

This same procedure was used to follow subjects learning a hierarchy of
nested categories, which is illustrated here (Overhead #6), where V stands for a
variable attribute. The first two categories, A1 and A2, share values of 1 on the
first 3 attributes but differ with values of 1 versus 2 on the fourth, fifth, and
sixth. The last two categories, B1 and B2, share values of 2 on the first 3
attributes but likewise differ with value of 3 versus 4 on the fourth, fifth, and
sixth attributes. These were shown to subjects in blocks of 10 instances with the
blocks in the order A1, A2, B1, B2, all ending with a mixed test block of 2
instances from all 4 subcategories. Here are the attribute listing data (Overhead
#7). The top graph shows the rapid decline in listing of the superordinate (the
first three) defaults, but it pops up again at the first B stimulus when these
values are changed. The middle graph is for the subordinate defaults--
attributes 4, 5, and 6; these decline over the first series of Al patterns, then pop
up when the first instance of the novel A2 subcategory is seen, and pop up again
as each new subcategory makes its appearance. However, all the superordinate
defaults are carried over without fail as new subordinate categories are created
to decribe the new instances. By comparison, the fully variable features, shown
in the bottom graph, rise up quickly and continue to be listed around 95%
throughout. So these data show excellent learning of a hierarchy of categories of
insects defined by common features.

Another indirect index of such learning we have explored involves limiting
the amount of time subjects can inspect a verbal description of a species of trees
while trying to memorize it (Overhead #8). They are allowed to examine the
attributes one at a time on the computer screen. They can move around among
the attributes row by row, and we record how much of the time they invest in
studying default versus variable attributes. After studying each instance, their
memory for it is immediately tested. As expected, subjects quickly learn the
defaults, so they spend progressively less time inspecting them, but nonetheless
recall them very well; on the other hand, they spend a progressively higher
percentage of their time studying the variable attributes, so that their memory
for those features also improves. I'll not have time here to show you any of that
data on self-selected study times, although it is very orderly and
regular.[Overhead off]
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a. Aralia
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I will turn now to describing a procedural variable we've studied which has a
major impact on how much subjects learn from exposure to a set of A and B
patterns. This variable is simply the sequence or order in which the two sets of
patterns are presented to subjects. We were not prepared for the huge effect this
variable had on our data, namely, that category learning is far, far easier if
subjects see a long block of instances all of one type before they ever see
instances of a second type. Compared to a randomly intermixed series, the
advantage in learning produced by blocking is just enormous.

You can get an intuitive feel for the difference in difficulty here by perusing
the first 10 instances (in the rows) which mix 5 A-patterns with 5 B-patterns in
random order in this overhead (Overhead #9); your job is to find out what
values of which attributes are correlated. It's very hard to do; moreover, our
subjects weren't allowed to examine all 10 patterns laid out before them at one
time as you can see here, they could only see one instance at a time. Iin addition,
our subjects did not have the goal of looking for correlated features underlying
categories.

The structure of the patterns becomes more obvious and easily learnable if
the same 10 instances are presented in a block of 5A’s, then 5B's, as illustrated at
the bottom. Here, looking down the columns, you can see that the A's have a
value of 1 in attributes 2, 5, 7, and the B's have a value of 2 in those attributes.

It's easy to demonstrate this principle, that category learning is facilitated by
blocking instances. One demonstration is shown in this overhead (Overhead
#10) comparing learning of two groups after they were pretrained with 8
instances. In pretraining, the Practice group (the Xs) saw 4 A's mixed in with 4
Bs, whereas the Contrast group (the O's) saw a block of 8 A's. These two groups
then received a mixed series of 12 A's and 12 B's, but we've plotted the A and B
trials separated in this graph. The learning measure is the subjects' preference
for listing variable qver default attributes.

It's obvious that the Contrast subjects, who start out seeing enough A'sin a
row to acquire very confident norms, continue to do well even after they are
surprised by the first B pattern; they consistently outperform the Practice
subjects, whose pretraining with a mixture of A's and B's seems to have locked
them into a very nonoptimal performance, barely above that of a random
uncorrelated control condition. Paradoxically, the Contrast condition shows that
by eliminating the B trials in Pretaining, we enhance the learning of B stimuli in
the later series.--- sort of a reverse practice effect. The Practice subjects
apparently see so much variability in their pretraining mixture of A's and B's
that they give up any attempt to see structure in the collection of patterns.
[Overhead off]




ATTRIBUTES

2

1

MIXED
SEQUENCE

— et = = N~ NN O

il e N e BL_ R ot BE _BE I o BE RN o

AN o O o= O

— OO N e o

—_— N = NN v N

(o I e I e BTN o BRI RS Y o\ |

Ll e e BETIN oF BECCRRETRY o IESRN oN |

AN v O vt v vt O O v vt

INSTANCES

— NNt~ S

ATTRIBUTES

2

1

BLOCKED
SEQUENCE

— et e O] O

vt v oy oy g

AN =N -

v e | ey

— NN~

A AN vt v

v v v =i e

N vt =t O\ w

i v O N vt

AANANANAN

N N vt vi v

AN

N — O~ —

N =t w—-

AN

N v O v

INSTANCES

— NN g wWnN

O~ S




O = Contrast
X = Practice
2 A
B9

B7

B1 BS

A9

A3 A5 A7
Instance

A A A i A A A
Al

A

Pretraining

A i I i Nl 1 1
0L 80 90 *0 20 00
(S11NVI3d - SITIVIIVA) ONILSIT INIDYAd

2 oy




This difference in learning between blocked vs. mixed series is very
interesting theoretically because the result contradicts most of the standard
theories of unsupervised learning. For example, many clustering algorithms
expect best performance when the model sees many contrasting examples in
alternation rather than a block of one type. And connectionist models that use
autoassociation to learn interfeature correlations predict either no difference due
to sequencing stimuli or predict catastrophic retroactive interference with the
blocked sequence.

The results instead point to a discrete process by which subjects invent a
category, then acquire norms or defaults within that category that are
sufficiently stable that subjects are able to be surprised by an unexpectedly large
departure from those norms when they encounter the first instance of the
alternate category. That surprise leads them to set up a new category and to
begin learning its norms in a manner segregated from the norms learned about
the first category. We've developed a simulation model that does just that, but I
won't bother presenting it in this setting.

So those are the results I wished to present. The additional question for this
conference is whether there are any practical applications of the result. I
suppose some applications could certainly arise in educational settings where
students are learning to distinguish between members of different categories,
such as different animals, plants, flowers, airplanes, ships, or styles of residential
architecture. In these cases, we have some chance of describing objects in terms
of lists of features. Another example might be for students learning to identify
geometric figures, such as regular polygons, as shown here (Overhead #11).
Polygons can be divided according to their number of sides, with names
provided for some that have special features. Thus, triangles can be classified as
right triangles, isosceles, or equilateral depending on special features. If we
wanted students to discover these classes for themselves, we could show them
example triangles arranged in an order that was either blocked or random across
the subcategories. Presumably they would discover the classes more quickly if
they observed the examples in a blocked fashion. I think the blocking strategy
would also work well with acquiring expertise in wine tasting: I can imagine
that prospective wine tasters would learn to discriminate the wines more quickly
if they tasted a collection of chardonnays, then rieslings, then sauvignon blancs
in blocked fashion rather than tasting them in a mixed up sequence. You will all
have the opportunity to test out this prediction at the receptions during this
conference. [Overhead off]

Another application of the blocking idea would be general advice to
unsupervised learners for when they explore an uncharted domain, especially if
they have some control over the order in which they see examples. The advice is
to avoid covering too much territory too quickly lest you get overwhelmed by
the variability. Rather, it is better to start out slowly by exploring only relatively
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small variations of aspects of a given type of object--say, types of leaves on
plants. In this way, you can learn a confident set of norms for that one type.
Thereafter, using that as a firm foothold for classifying the domain, you can seek
out a large contrasting type to learn next, and begin exploring small variations
around that contrasting class. Our results suggest that, when it can be
implemented, this strategy should produce fairly rapid discovery learning. That
is, at least, one of the practical lessons I draw from this otherwise theoretical
result.

Thank you for your attention.
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